
SoftICE
Command Reference

Release 2.7

Windows® 95
Windows® 98

Windows® Me
Windows NT®

Windows® 2000
Windows® XP

TM

Part Number 11553
Copyright © 2002 Compuware Corporation. All rights reserved.

June, 2002

Information in this document is subject to change without notice and does not represent a
commitment on the part of Compuware Corporation. The software described in this document is
furnished under the software license agreement distributed with the product. The software may be
used or copied only in accordance with the terms of the license. No part of this document may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic or
mechanical, including photocopying or recording for any purpose other than the purchaser’s
personal use, without prior written permission from Compuware Corporation, 31440
Northwestern Highway, Farmington Hills, MI 48334-2564.

Names and logos identifying products of Compuware are registered trademarks or trademarks of
Compuware Corporation. Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other countries. Other
product names used or mentioned herein are or may be the trademarks of their respective owners.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in FAR
52.227-14, FAR 52.227-19(c)(1.2) (June 1987) or DFARS 252.227-7013(c)(1)(ii) (Oct 1988), as
applicable.

ensed

protected

). An

he terms

mpuware

e,
Software License Agreement
This Software License Agreement is not applicable if Licensee has a valid Compuware License Agreement and has lic
this Software under a Compuware Product Schedule.

COMPUWARE CORPORATION ("COMPUWARE") IS WILLING TO LICENSE THIS SOFTWARE (SOFTWARE) TO YOU ONLY ON THE
CONDITION THAT YOU ACCEPT ALL OF THE TERMS CONTAINED IN THIS AGREEMENT. BEFORE YOU CLICK ON THE "ACCEPT"
BUTTON, CAREFULLY READ THE TERMS AND CONDITIONS OF THIS AGREEMENT. BY CLICKING ON THE "ACCEPT" BUTTON, YOU
ARE CONSENTING TO BE BOUND BY THESE TERMS AND CONDITIONS. IF YOU DO NOT AGREE TO ALL OF THE TERMS AND
CONDITIONS OF THIS AGREEMENT, THEN COMPUWARE IS UNWILLING TO LICENSE THE SOFTWARE TO YOU, IN WHICH EVENT YOU
SHOULD CLICK THE “DO NOT ACCEPT” BUTTON TO DISCONTINUE THE INSTALL PROCESS AND CONTACT YOUR COMPUWARE
SALES REPRESENTATIVE.

Software License Agreement
Please Read This License Carefully

You, either an individual or entity (Licensee), are purchasing a license (Agreement) to use this Compuware Corporation software, related user manuals
(Documentation), and other materials provided hereunder (collectively, the Software). The Software is the property of Compuware Corporation (Compu-
ware) and/or its licensors, is protected by intellectual property laws, and is provided to Licensee only under the license terms set forth below. This Agree-
ment does not transfer title to the intellectual property contained in the Software. Compuware reserves all rights not expressly granted herein. By
clicking on the “Accept” button and/or installing the Software indicates your acceptance of these terms. If you do not agree to all of the terms and condi-
tions of this Agreement, do not install the Software and contact a Compuware sales representative.
Title and Proprietary Rights: Licensee acknowledges and agrees that the Software is proprietary to Compuware and/or its licensors, and is
under the laws of the United States and other countries. Licensee further acknowledges and agrees that all rights, title and interest in and to the Software,
including intellectual property rights, are and shall remain with Compuware and/or its licensors. Unauthorized reproduction or distribution is subject to
civil and criminal penalties.
Evaluation Copy: This section shall apply only if the Software has been provided for Licensee's evaluation of the Software (Evaluation Copy
Evaluation Copy is provided AS IS, with no warranties, express or implied, or maintenance service; for the sole and exclusive purpose of enabling Lic-
ensee to evaluate the Software. The Evaluation Copy will automatically time-out at the end of the evaluation period. If Licensee elects to continue to use
the Software at the end of the evaluation period, Licensee must contact a Compuware representative.
Use Of The Software: Compuware grants Licensee the limited right to use the Software included in the package with this license, subject to t
and conditions of this Agreement. Licensee agrees that the Software will be used solely for internal purposes. Licensee may not use the Software to offer
data processing services to third parties, including but not limited to timesharing, facilities management, outsourcing or service bureau use, or any other
third party commercial purpose or gain. Only one copy of the Software may be installed on a single computer at any one time unless:

(i) The Software is designed and intended by Compuware for use in a shared network client server environment, as set forth in the
Documentation; and

(ii) Licensee agrees to provide technical or procedural methods to prevent use of the Software, even at different times, by anyone other
than Licensee; and

(iii) Licensee has purchased a license for each individual user of the Software and/or for each computer that will have access to the
Software. Any unauthorized use of this Software may cause termination of this Agreement.

Licensee may make one machine-readable copy of the Software for BACK UP PURPOSES ONLY. This copy shall display all proprietary notices, be
labeled externally to show that it is the property of Compuware, and that its use is subject to this Agreement. Documentation may not be copied in whole
or part. Licensee agrees to provide technical or procedural methods to prevent use of the Software by anyone other than Licensee, even at different times.
Licensee may not use, transfer, assign, export or in any way permit the Software to be used outside the country of purchase, unless authorized in writing
by Compuware. Except as expressly provided in this Agreement, Licensee may not modify, reverse engineer, decompile, disassemble, distribute, sub-
license, sell, rent, lease, give or in any way transfer the Software, by any means or in any medium, including telecommunications. Licensee will use its
best efforts and take all reasonable steps to protect the Software from unauthorized use, copying or dissemination, and will retain all proprietary notices
intact.
Maintenance Service: Licensee may subscribe to maintenance service on an annual basis by paying the maintenance fee then in effect. If Co
provides maintenance service while connected to Licensee's system or network either remotely or in person, Compuware shall not be responsible for any
damage or loss, including but not limited to server failure, data loss, virus/worm infection and network downtime. Licensee is responsible for maintain-
ing adequate backup and virus intrusion software for its server, data and network systems.
Redistribution Rights of Device Driver Development Software: This section shall only apply if the Software is device driver development softwar
used by Licensee to develop application or device driver programs (User Software), as specified in the Documentation. The User Software may include
run-time components (RTC’s) that have been extracted by the Software from the library files of the Software, programs to remotely test the User Soft-

li

a

 lawsuits,

 sha

s from

-
F

nsee

O

R
IA-

H

nated by
ware, and compiled code examples. These RTCs, examples, and programs are specifically designated as redistributable in the Documentation. Licensee
has a non-exclusive, royalty-free, restricted license to:

(i) Modify, compile, and distribute the driver code examples;
(ii) Distribute the remote testing program for testing purposes only;

(iii) Embed the RTCs and driver code examples in its User Software, in object code form only; and

(iv) Reproduce and distribute the RTCs and driver code examples embedded in its User Software, in object code form only, provided that:

(a) Licensee distributes the RTCs and driver code examples only in conjunction with and as a part of its User Software;

(b) Licensee will be solely responsible to anyone receiving its User Software for any updates, technical and other support obgations,
and any other liability which may arise from the distribution of its User Software;

(c) Licensee does not use Compuware’s or its licensors’ names, logos, or trademarks to market or distribute its User Software;

(d) Licensee includes Compuware’s and its licensors’ copyright and/or proprietary notices and legends within the executable imges
of its User Software and on Licensee’s software media and documentation; and

(e) Licensee agrees to indemnify, hold harmless and defend Compuware and its licensors from and against any claims or
including attorney’s fees, that arise or result from the use or distribution of its User Software.

Government Users: With respect to any acquisition of the Software by or for any unit or agency of the United States Government, the Softwarell be
classified as "commercial computer software," as that term is defined in the applicable provisions of the Federal Acquisition Regulation (the "FAR") and
supplements thereto, including the Department of Defense (DoD) FAR Supplement (the "DFARS"). If the Software is supplied for use by DoD, the Soft-
ware is delivered subject to the terms of this Agreement and either (i) in accordance with DFARS 227.7202-1(a) and 227.7202-3(a), or (ii) with restricted
rights in accordance with DFARS 252.227-7013(c)(1)(ii) (OCT 1988), as applicable. If the Software is supplied for use by a Federal agency other than
DoD, the Software is restricted computer software delivered subject to the terms of this Agreement and (i) FAR 12.212(a); (ii) FAR 52.227-19; or (iii)
FAR 52.227-14(ALT III), as applicable. Licensor: Compuware Corporation, 31440 Northwestern Highway, Farmington Hills, Michigan 48334.
Limited Warranty and Remedy: Compuware warrants the Software media to be free of defects in workmanship for a period of ninety (90) day
purchase. During this period, Compuware will replace at no cost any such media returned to Compuware, postage prepaid. This service is Compuware’s
sole liability under this warranty. COMPUWARE DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE IMPLIED WAR
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SOME STATES DO NOT ALLOW THE EXCLUSION O
IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO LICENSEE. IN THAT EVENT, ANY IMPLIED WARRANTIES
ARE LIMITED IN DURATION TO THIRTY (30) DAYS FROM THE DELIVERY OF THE SOFTWARE. LICENSEE MAY HAVE OTHER
RIGHTS, WHICH VARY FROM STATE TO STATE.
Infringement of Intellectual Property Rights: In the event of an intellectual property right claim, Compuware agrees to indemnify and hold Lice
harmless, provided Licensee gives Compuware prompt written notice of such claim, permits Compuware to defend or settle the claim, and provides all
reasonable assistance to Compuware in defending or settling the claim. In the defense or settlement of such claim, Compuware may obtain for Licensee
the right to continue using the Software or replace or modify the Software so that it avoids such claim, or if such remedies are not reasonably available,
accept the return of the infringing Software and provide Licensee with a pro-rata refund of the license fees paid for such Software based on a three (3)
year use period.
Limitation of Liability: LICENSEE ASSUMES THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE SOFTWARE. IN N
EVENT WILL COMPUWARE BE LIABLE TO LICENSEE OR TO ANY THIRD PARTY FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING BUT NOT LIMITED TO, LOSS OF USE, DATA, REVENUES OR PROFITS, ARISING OUT OF O
IN CONNECTION WITH THIS AGREEMENT OR THE USE, OPERATION OR PERFORMANCE OF THE SOFTWARE, WHETHER SUCH L
BILITY ARISES FROM ANY CLAIM BASED UPON CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCT LIABILITY
OR OTHERWISE, AND WHETHER OR NOT COMPUWARE OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUC
LOSS OR DAMAGE. SOME STATES DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSE-
QUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO LICENSEE. IN NO EVENT SHALL COMPU-
WARE BE LIABLE TO LICENSEE FOR AMOUNTS IN EXCESS OF PURCHASE PRICE PAID FOR THE SOFTWARE.
Term and Termination: This License Agreement shall be effective upon Licensee’s acceptance of this Agreement and shall continue until termi
mutual consent, or by election of either Licensee or Compuware in case of the other’s unremediated material breach. In case of any termination of this
Agreement, Licensee will immediately return to Compuware the Software that Licensee has obtained under this Agreement and will certify in writing
that all copies of the Software have been returned or erased from the memory of its computer or made non-readable.
General: This Agreement, the Compuware invoice and Licensee purchase order, are the complete and exclusive statement of the parties' agreement and
supersede any prior agreement or understanding whether oral or written, relating to the subject of this Agreement. The preprinted terms of any purchase
order accepted by Compuware are expressly superseded by this Agreement. Should any provision of this Agreement be held to be invalid by any court of
competent jurisdiction, that provision will be enforced to the maximum extent permissible and the remainder of the Agreement shall nonetheless remain
in full force and effect. This Agreement shall be governed by the laws of the State of Michigan and the United States of America.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT AND AGREE TO BE BOUND BY ITS TERMS
AND CONDITIONS.

Contents
. 2

? 3

A . 4

ACTION 6

ADDR 8

ADDR 10

ALTKEY 12

ALTSCR 13

ANSWER 15

APC 16

BC 17

BD 18

BE 19

BH 20

BL 22

BMSG 23

BPE 25

BPINT 26

BPINT 28

BPIO 30

BPM 33

BPR 37

BPRW 4 0

BPT 42

BPX 4. 3

BSTAT 46

C 48

CLASS 4. 9

CLS 52

CODE 53

COLOR 54

CPU 56

CR 59

CSIP 60

D 62

DATA 64

DEVICE 65

DEX 68

DIAL 69

DPC 71

DRIVER 72

E 74

EC 76

ERESOURCE 77

EVENT 78

EVRES 81

EVMEM 84

EXIT 86

EXP 87

F 90

FAULTS 91

FIBER 92

FILE 93

FKEY 94

FLASH 96

FMUTEX 97

FOBJ 98

FORMAT 100

G 101

GDT 102

GENINT 104

H 106

HBOOT 107

HEAP 108

HEAP32 111

HEAP32 114

HERE 119

HS 120

HWND 121

HWND 124

I 128

I1HERE 129

I3HERE 130

IDT 131

INTOBJ 133

IRP 135

IRQ 138

KEVENT 141

KMUTEX 142

KSEM 143

LDT 144

LHEAP 146

LINES 148

LOCALS 149

M 150

MACRO 151

MAP32 155

MAPV86 157

MOD 159

MOD 161
SoftICE Command Reference i

Contents
MSR 164

NET 166

NTCALL 169

O 171

OBJDIR 172

OBJTAB 174

P 176

PACKET 178

PAGE 180

PAGEIN 185

PAUSE 186

PCI 187

PEEK 189

PHYS 190

POKE 191

Print Screen Key 192

PRN 193

PROC 194

QUERY 200

R 205

RS 207

S 208

SERIAL 209

SET 213

SHOW 216

SRC 217

SS 218

STACK 219

SYM 223

SYMLOC 225

T 227

TABLE 228

TABS 230

TASK 231

THREAD 233

THREAD 235

TIMER 238

TRACE 240

TSS 241

TYPES 243

U 244

USB 246

VCALL 249

VER 251

VM 252

VXD 255

VXD 257

WATCH 259

WC 261

WD 262

WF 263

WHAT 265

WIDTH 266

WL 267

WMSG 268

WR 269

WS 270

WT 271

WT 272

WW 273

WX 274

X 275

XFRAME 276

XG 278

XP 279

XRSET 280

XT 281

ZAP 282
ii SoftICE Command Reference

You will find it a very good practice always
to verify your references, sir!

◊ Dr. Routh
SoftICE Commands

The SoftICE Command Reference is for use with the following operating systems:

The commands are listed in alphabetical order and contain the following information:

• Windows 3.1 • Windows Millennium • Windows 2000

• Windows 95/98 • Windows NT • Windows XP

OBJDIR Win9x, WinNT/2000/XP System Information

Displays objects in a Windows NT Object Manager’s object directory.

Syntax OBJDIR [object-directory-name]

Use Use the OBJDIR command to display named objects within the Object
Manager’s object directory. Using OBJDIR with no parameters displays
the named objects within the root object directory.

Output The OBJDIR command displays the following information:

Object Address of the object body
ObjHdr Address of the object header
Name Name of the object
Type Windows NT-defined data type of the object

Example Abbreviated sample output of the OBJDIR command listing objects in
the Device object directory follows:

OBJDIR device
Directory of \Device at FD8E7F30

Object ObjHdr Name Type

FD8CC750 FD8CC728 Beep Device

FD89A030 FD89A008 NwlnkIpx Device

FD889150 FD889128 Netbios Device

Operating systems

See Also OBJTAB

Command name

Type of SoftICE command:

· Breakpoints and Watches
· Customization
· Display/Change Memory
· Flow Control
· I/O Port
· Manipulating Breakpoints
· Miscellaneous
· Mode Control
· Symbol/Source
· System Information
· Window Control

Syntax and parameters

Command use

Sample output

Example(s)

These sections
also include any
operating system
specific
information.

Lists related commands

Note: Throughout this manual,
“Windows 9x” will refer to the
Windows 95, 98, and Millennium
operating systems (treated as a group);
“Windows NT/2000/XP” will refer to
the Windows NT, Windows 2000, and
Windows XP operating systems.
SoftICE Command Reference 1

SoftICE Commands
. Windows 3.1, Windows 9x, Windows NT/2000/XP Window Control

Locate the current instruction in the Code window.

Syntax .

Use When the Code window is visible, the . (Dot) command makes the instruction at the
current CS:EIP visible and highlights it.

For Windows 9x and Windows NT/2000/XP

The command switches the context back to the original context in which SoftICE
popped up.
2 SoftICE Command Reference

SoftICE Commands
? Windows 3.1, Windows 9x, Windows NT/2000/XP Miscellaneous

Evaluate an expression.

Syntax For Windows 3.1

? [command | expression]

For Windows 9x and Windows NT/2000/XP

? expression

Use For Windows 3.1

Under Windows 3.1, the parameter you supply to the ? command determines whether
help is displayed or an expression is evaluated. If you specify a command, ? displays
detailed information about the command, including the command syntax and an
example. If you specify an expression, the expression is evaluated, and the result is
displayed in hexadecimal, decimal, signed decimal (only if < 0), and ASCII.

For Windows 9x and Windows NT/2000/XP

Under Windows 9x and Windows NT/2000/XP, the ? command only evaluates
expressions. (Refer to H on page 106 for information about getting help under
Windows 9x and Windows NT/2000/XP.)

To evaluate an expression enter the ? command followed by the expression you want
to evaluate. SoftICE displays the result in hexadecimal, decimal, signed decimal (only
if < 0), and ASCII.

Example The following command displays the hexadecimal, decimal, and ASCII
representations of the value of the expression 10*4+3.

:? 10*4+3

00000043 0000000067 "C"

See Also H

SoftICE Command Reference 3

SoftICE Commands
A Windows 3.1, Windows 9x, Windows NT/2000/XP Miscellaneous

Assemble code.

Syntax A [address]

Use Use the SoftICE assembler to assemble instructions directly into memory. The
assembler supports the standard Intel 80x86 instruction set.

If you do not specify the address, assembly occurs at the last address where
instructions were assembled. If you have not entered the A command before and did
not specify the address, the current CS:EIP address is used.

The A command enters the SoftICE interactive assembler. An address displays as a
prompt for each assembly line. After you type an assembly language instruction and
press Enter, the instructions assemble into memory at the specified address. Type
instructions in the standard Intel format. To exit assembler mode, press Enter at an
address prompt.

If the address range in which you are assembling instructions is visible in the Code
window, the instructions change interactively as you assemble.

The SoftICE assembler supports the following instruction sets:

• For Windows 3.1: 386, Floating Point

• For Windows 9x and Windows NT/2000/XP: 386, 486, Pentium, Pentium Pro, all
corresponding numeric coprocessor instruction sets, and MMX instruction sets

SoftICE also supports the following special syntax:

• Enter USE16 or USE32 on a separate line to assemble subsequent instructions as
16-bit or 32-bit, respectively. If you do not specify USE16 or USE32, the default is
the same as the mode of the current CS register.

• Enter mnemonic commands followed by a list of bytes and/or quoted strings
separated by spaces or commas.

• Use the RETF mnemonic to represent a far return.

• Use WORD PTR, BYTE PTR, DWORD PTR, and FWORD PTR to determine data
size, if there is no register argument.

Example: MOV BYTE PTR ES:[1234.],1

• Use FAR and NEAR to explicitly assemble far and near jumps and calls. If you do
not specify either, the default is NEAR.

• Place operands referring to memory locations in square brackets.

Example: MOV AX,[1234]
4 SoftICE Command Reference

SoftICE Commands
For Windows NT/2000/XP

Any changes you make to 32-bit code are “sticky.” This means they remain in place
even if you load or reload the module you change. To remove the changes, do one of
the following: restart Windows NT/2000/XP, flush the memory image from the cache,
or modify the module.

Example When you use the following command:

A CS:1234

the assembler prompts you for assembly instructions. Enter all instructions and press
Enter at the address prompt. The assembler assembles the instructions beginning at
offset 1234h within the current code segment.
SoftICE Command Reference 5

SoftICE Commands
ACTION Windows 3.1 Mode Control

Set action after breakpoint is reached.

Syntax ACTION [nmi|int1|int3|here|interrupt-number|debugger-name]

nmi Generates non-maskable interrupt after breakpoint.

int1 Generates INT1 instruction after breakpoint.

int3 Generates INT3 instruction after breakpoint.

here Returns control to SoftICE after breakpoint.

interrupt-number Valid interrupt number between 0 and 5Fh.

debugger-name Module name of the Windows application debugger which gains
control after a SoftICE breakpoint.

Use The ACTION command determines where to pass control when breakpoint conditions
are met. In most cases, you use ACTION to pass control to an application debugger
you are using in conjunction with SoftICE. Use the HERE parameter to return to
SoftICE when break conditions have been met. Use the NMI, INT1, and INT3
parameters as alternatives for activating DOS debuggers when break conditions are
met. Use debugger-name to activate Windows debuggers. To find the module name of
the debugger, use the MOD command.

If you specify debugger-name, an INT 0 triggers the Windows debugger. SoftICE
ignores breakpoints that the Windows debugger causes if the debugger accesses
memory covered by a memory location or range breakpoint. When SoftICE passes
control to the Windows debugger with an INT 0, the Windows debugger responds as if
a divide overflow occurred and displays a message. Ignore this message because the
INT 0 was not caused by an actual divide overflow.

Note: The ACTION command is obsolete under Windows 9x and Windows NT/2000/XP.
6 SoftICE Command Reference

SoftICE Commands
Example When using SoftICE with the following products, use the corresponding command.

See Also Refer to setting breakpoints in Using SoftICE.

Product SoftICE Command

CodeView for DOS ACTION nmi

Note: SoftICE generates a non-maskable interrupt when
break conditions are met. This gives control to
CodeView for DOS.

CodeView for Windows ACTION cvw

Borland’s Turbo Debugger for Windows ACTION tdw

Multiscope’s Debugger for Windows ACTION rtd
SoftICE Command Reference 7

SoftICE Commands
ADDR Windows 9x System Information

Display or switch to address context.

Syntax ADDR [context-handle | process-name]

context-handle Address context handle.

process-name Name of a process.

Use To be able to view the private address space for an application process, set the current
address context within SoftICE to that of the application by providing an address
context-handle or the process-name as the first parameter to the ADDR command. To
view information on all currently active contexts, use ADDR with no parameters. The
first address context listed is the current address context.

To use ADDR with
Windows NT/2000/
XP, refer to ADDR
on page 10.

For each address context, SoftICE prints the following information:

• address context handle

• address of the private page table entry array (PGTPTR) of the context

• number of entries that are valid in the PGTPTR array

• starting and ending linear addresses represented by the context

• address of the mutex object used to control access to the context’s page tables

• name of the process that owns the context.

When you use the ADDR command with an address context parameter, SoftICE
switches address contexts in the same way as Windows.

When switching address contexts, Windows 9x copies all entries in the new context’s
PGTPTR array to the page directory (pointed to by the CR3 register). A context switch
affects the addressing of the lower 2GB of memory from linear address 0 to 7FFFFFFFh.
Each entry in a PGTPTR array is a page directory entry which points at a page table
that represents 4MB of memory. There can be a maximum of 512 entries in the
PGTPTR array to represent the full 2GB. If there are less than 512 entries in the array,
the rest of the entries in the page directory are set to invalid values.

When running more than one instance of an application, the same owner name
appears in the address context list more than once. If you specify an owner name as a
parameter, SoftICE always selects the first address context with a matching name in
the list. To switch to the address context of a second or third instance of an
application, provide an address context-handle to the ADDR command.

Note: If SoftICE pops up when the System VM (VM 1) is not the current VM, it is possible
for context owner information to be paged out and unavailable. In these cases no
owner information displays.
8 SoftICE Command Reference

SoftICE Commands
Output For each context or process, the following information displays.

Handle Address of the context control block. This is the handle that is passed
in VxD calls that require a context handle.

Pgtptr Address of an array of page table addresses. Each entry in the array
represents a page table pointer. When address contexts switch, the
appropriate location in the page directory receives a copy of this array.

Tables Number of entries in the PGTPTR array. Not all entries contain valid
page directory entries. This is only the number of entries reserved.

MinAddr Minimum linear address of the address context.

MaxAddr Maximum address of the address context.

Mutex Mutex handle used when VMM manipulates the page tables for the
context.

Owner Name of the first process that uses this address context.

Example The following command displays all currently active address contexts. The context on
the top line of the display is the context in which SoftICE popped up. To switch back
to this at any time, use the . (DOT) command. When displaying information on all
contexts, one line is highlighted, indicating the current context within SoftICE. When
displaying data or disassembling code, the highlighted context is the one you see.

.:ADDR

See Also For Windows NT/2000/XP, refer to ADDR on page 10.

Handle PGTPTR Tables Min Addr Max Addr Mutex Owner

C1068D00 C106CD0C 0200 00400000 7FFFF000 C0FEC770 WINWORD

C104E214 C1068068 0200 00400000 7FFFF000 C1063DBC Rundll32

C105AC9C C0FE5330 0002 00400000 7FFFF000 C0FE5900 QUICKRES

C1055EF8 C105CE8C 0200 00400000 7FFFF000 C105C5EC Ibserver

C1056D10 C10571D4 0200 00400000 7FFFF000 C1056D44 Mprexe

C10D900C C10D9024 0002 00400000 7FFFF000 C10D9050

C10493E8 C10555FC 0004 00400000 7FFFF000 C0FE6460 KERNEL32

C1055808 C105650C 0200 00400000 7FFFF000 C105583C MSGSRV32

C10593CC C1059B78 0200 00400000 7FFFF000 C105908C Explorer

C106AE70 C106DD10 0200 00400000 7FFFF000 C10586F0 Exchng32

C106ABC4 C106ED04 0200 00400000 7FFFF000 C106CA4C Mapisp32

The current context
is highlighted.
SoftICE Command Reference 9

SoftICE Commands
ADDR Windows NT/2000/XP System Information

Display or switch to an address context.

Syntax ADDR [process-name | process-id | KPEB]

process-name Name of any currently loaded process.

process-id Process ID. Each process has a unique ID.

KPEB Linear address of a Kernel Process Environment Block.

Use Use the ADDR command to both display and change address contexts within SoftICE
so that process-specific data and code can be viewed. Using ADDR with no parameters
displays a list of all address contexts.

If you specify a parameter, SoftICE switches to the address context belonging to the
process with that name, identifier, or process control block address.

To use ADDR with
Windows 9x, refer to
ADDR on page 8.

If you switch to an address context that contains a Local Descriptor Table (LDT),
SoftICE sets up the LDT with the correct base and limit.

All commands that use an LDT only work when the current SoftICE context contains
an LDT. LDTs are never global under Windows NT/2000/XP.

Under low memory conditions, Windows NT/2000/XP starts swapping data to disk,
including inactive processes, parts of the page directory, and page tables. When this
occurs, SoftICE may not be able to obtain the information necessary to switch to
contexts that rely on this information. SoftICE indicates this by displaying the
message swapped in the CR3 field of the process or displaying an error message if an
attempt is made to switch to the context of the process.

When displaying information about all contexts, one line is highlighted, indicating
the current context within SoftICE. When displaying data or disassembling code, the
highlighted context is the one you see.

An * (asterisk) precedes one line of the display, indicating the process that was active
when SoftICE popped up. Use the . (DOT) command to switch contexts back to this
context at any time.

Output For each context or process, ADDR shows the following information.

CR3 Physical address of the page directory that is placed into the CR3
register on a process switch to the process.
10 SoftICE Command Reference

SoftICE Commands
LDT If the process has an LDT, this field has the linear base address of the
LDT and the limit field for the LDT selector. All Windows NT/2000/
XP processes that have an LDT use the same LDT selector. For
process switches, Windows NT/2000/XP sets the base and limit fields
of this selector.

KPEB Linear address of the Kernel Process Environment Block for the
process.

PID Process ID. Each process has a unique ID.

NAME Name of the process.

Example The following example shows the ADDR command being used without parameters to
display all the existing contexts.

:ADDR

See Also For Windows 9x, refer to ADDR on page 8.

PROC

CR3 LDT Base:Limit KPEB PID NAME

00030000 FD8EA920 0002 System

011FB000 FD8CD880 0013 smss

017A5000 FD8BFB60 0016 csrss

01B69000 FD8BADE0 001B winlogon

01CF3000 FD8B6B40 0027 services

01D37000 FD8B5760 0029 lsass

00FFA000 FD8A8AE0 0040 spoolss

009A5000 FD89F7E0 002B nddeagnt

00AA5000 FD89CB40 004A progman

006D2000 E115F000:FFEF FD899DE0 0054 ntvdm

00837000 FD896D80 0059 CLOCK

00C8C000 FD89C020 0046 scm

00387000 FD89E5E0 004E 4NT

*0121C000 E1172000:0187 FD88CCA0 0037 ntvdm

00030000 8013DD50 0000 Idle
SoftICE Command Reference 11

SoftICE Commands
ALTKEY Windows 3.1, Windows 9x, Windows NT/2000/XP Customization

Set an alternate key sequence to invoke SoftICE.

Syntax ALTKEY [Alt letter | Ctrl letter]

letter Any letter (A through Z).

Use Use the ALTKEY command to change the key sequence (default key Ctrl-D) for
popping up SoftICE. Occasionally another program may conflict with the default hot
key sequence. You can change the key sequence to either of the following sequences:

Ctrl + letter

or

Alt + letter

If you do not specify a parameter, the current hot key sequence displays.

To change the hot key sequence every time you run SoftICE, configure SoftICE in the
SoftICE Loader to place the ALTKEY command in the SoftICE initialization string.

Example To specify that the key sequence Alt-Z pops up the SoftICE screen, use the following
command.

ALTKEY alt z
12 SoftICE Command Reference

SoftICE Commands
ALTSCR Windows 3.1, Windows 9x, Windows NT/2000/XP Window Control

Display SoftICE on an alternate screen.

Syntax ALTSCR [mono | vga | off]

mono Redirects SoftICE output to an alternate monochrome monitor using
a Hercules-compatible monochrome card. This mode displays 43 lines
of text rather than the 25 lines displayed in text mode.

vga Redirects SoftICE output to an alternate monitor using standard VGA
mode.

Use Use the ALTSCR command to redirect the SoftICE output from the default screen to an
alternate monochrome or VGA monitor.

ALTSCR requires the system to have two monitors attached. The alternate monitor
should be either a monochrome monitor in a character mode (the default mode), or a
VGA card.

The default setting is ALTSCR mode OFF.

Hint: To change the SoftICE display screen every time you run SoftICE, place the ALTSCR
command in the Initialization string within your SoftICE configuration settings. Refer
to Chapter 10, “Customizing SoftICE” in the Using SoftICE guide.

In the SoftICE program group, use Display Adapter Setup to select the monochrome
monitor. SoftICE automatically starts out in monochrome mode making the ALTSCR
command unnecessary. Also use this setting if you are experiencing video problems even when
ALTSCR ON is in the initialization string.

Note: ALTSRC VGA Users
If you use an alternate screen in VGA mode, you must disable VGA on the graphics
card that will be used to display Windows. You cannot use two cards that are in VGA
mode at the same time. Consult the documentation for your graphics card to find the
appropriate PCI slot or switches to set.

For Windows 9x

You can also start WINICE with the /M parameter to bypass the initial VGA
programming and force SoftICE to an alternate monochrome screen. This is useful if
your video board experiences conflicts with the initial programming.
SoftICE Command Reference 13

SoftICE Commands
Example The following command redirects screen output to the alternate monitor in standard
VGA mode.

ALTSCR vga
14 SoftICE Command Reference

SoftICE Commands
ANSWER Windows 9x, Windows NT/2000/XP Customization

Auto-answer and redirect console to modem.

Syntax ANSWER [on [com-port] [baud-rate] [i=init] | off]

com-port If no com-port is specified it uses COM1.

baud-rate Baud-rate to use for modem communications. The default is 38400.
The rates include 1200, 2400, 4800, 9600, 19200, 23040, 28800,
38400, 57600, 115200.

i=init Optional modem initialization string.

Use The ANSWER command allows SoftICE to answer an incoming call and redirect all
output to a connecting PC running the SERIAL.EXE program in dial mode. After the
command is executed, SoftICE listens for incoming calls on the specified com-port
while the machine continues normal operation. Incoming calls are generated by the
SERIAL.EXE program on a remote machine.

You can place a default ANSWER initialization string in the SoftICE configuration
settings. Refer to Chapter 10, “Customizing SoftICE” in the Using SoftICE guide.

When SoftICE detects a call being made after the ANSWER command has been
entered, it pops up and indicates that it is making a connection with a remote
machine, then pops down. The local machine appears to be hung while a remote
connection is in effect.

The ANSWER command can be cancelled at any time with ANSWER OFF. This stops
SoftICE from listening for incoming calls.

Example The following is an example of the ANSWER command. SoftICE first initializes the
modem on com-port 2 with the string “atx0,” and then returns control to the
command prompt. From that point on it answers calls made on the modem and
attempts to connect at a baud rate of 38400bps.

ANSWER on 2 38400 i=atx0

The following is an example of a default ANSWER initialization string statement in
your SoftICE configuration settings. With this statement in place, SoftICE always
initializes the modem specified in ANSWER commands with “atx0,” unless the
ANSWER command explicitly specifies an initialization string.

ANSWER=atx0

See Also SERIAL
SoftICE Command Reference 15

SoftICE Commands
APC Windows NT/2000/XP System Information

Display Asynchronous Procedure Calls.

Syntax APC [address | TID | PID]

address Location of an asynchronous procedure call.

TID Thread ID of thread you want to search for asynchronous procedure
calls.

PID Process ID of process you want to search for asynchronous procedure
calls.

Use The APC command displays information about asynchronous procedure calls that are
current in the system. If you enter APC with no parameters, SoftICE lists all
asynchronous procedure calls queued for delivery in the currently running thread. Or
you can instruct SoftICE to walk through a specified thread or process.

Example The following command displays information about an asynchronous procedure call

APC

APC Object at 806D716C
PKTHREAD 806E15E0
APC Queue Flink 806E1614 Blink 806E1614

Routines:
Kernel 801A3B5E ntoskrnl!NtVdmControl+130E
Rundown 801A44DA ntoskrnl!NtVdmControl+1C8A
Normal 801A3CFA ntoskrnl!NtVdmControl+14AA
Normal Context 00000000
Argument1 00000000 Argument2 00000000
ApcStateIndex 0
ApcMode KernelMode
In APC Queue

User mode APC Queue Empty

See Also DPC
16 SoftICE Command Reference

SoftICE Commands
BC Windows 3.1, Windows 9x, Windows NT/2000/XP Manipulating Breakpoints

Clear one or more breakpoints.

Syntax BC list | *

list Series of breakpoint indexes separated by commas or spaces.

* Clears all breakpoints.

Example To clear all breakpoints, use the command:

BC *

To clear breakpoints 1 and 5, use the following command.

BC 1 5

If you use the BL command (list breakpoints), the breakpoint list will be empty until
you define more breakpoints.
SoftICE Command Reference 17

SoftICE Commands
BD Windows 3.1, Windows 9x, Windows NT/2000/XP Manipulating Breakpoints

Disable one or more breakpoints.

Syntax BD list | *

list Series of breakpoint indexes separated by commas or spaces.

* Disables all breakpoints.

Use Use the BD command to temporarily deactivate breakpoints. Reactivate the
breakpoints with the BE command (enable breakpoints).

To tell which of the breakpoints are disabled, list the breakpoints with the BL
command. A breakpoint that is disabled has an * (asterisk) after the breakpoint index.

Example To disable breakpoints 1 and 3, use the following command.

BD 1 3
18 SoftICE Command Reference

SoftICE Commands
BE Windows 3.1, Windows 9x, Windows NT/2000/XP Manipulating Breakpoints

Enable one or more breakpoints.

Syntax BE list | *

list Series of breakpoint indexes separated by commas or spaces.

* Enables all breakpoints.

Use Use the BE command to reactivate breakpoints that you deactivated with the BD
command (disable breakpoints).

Note: You automatically enable a breakpoint when you first define it or edit it.

Example To enable breakpoint 3, use the following command.

BE 3
SoftICE Command Reference 19

SoftICE Commands
BH Windows 3.1, Windows 9x, Windows NT/2000/XP Manipulating Breakpoints

List and select previously set breakpoints from the breakpoint history.

Syntax BH

Use Use the BH command to recall breakpoints that you set in both the current and
previous SoftICE sessions. All saved breakpoints display in the Command window and
can be selected using the following keys:

UpArrow Positions the cursor one line up. If the cursor is on the top line of the
Command window, the list scrolls.

DownArrow Positions the cursor one line down. If the cursor is on the bottom line
of the Command window, the list scrolls.

Insert Selects the breakpoint at the current cursor line, or deselects it if
already selected.

Enter Sets all selected breakpoints.

Esc Exits breakpoint history without setting any breakpoints.

SoftICE saves the last 32 breakpoints.

For Windows 3.1 and Windows 9x

Each time Windows exits normally, these breakpoints are written to the WINICE.BRK
file in the same directory as WINICE.EXE. Every time SoftICE is loaded, it reads the
breakpoint history from the WINICE.BRK file.

For Windows 9x

IF you configure Windows 9x to load SoftICE before WIN.COM by appending
\siw95\winice.exe to the end of your AUTOEXEC.BAT, you must also set the BootGUI
option in MSDOS.SYS to BootGUI=0. If this option is set to BootGUI=1, Windows 9x
does not return control to SoftICE when it shuts down, and SoftICE does not save the
break-point history file. Refer toUsing SoftICE manual for more information about
configuring when SoftICE loads.

For Windows NT/2000/XP

Breakpoints are written to the WINICE.BRK file in the \SYSTEMROOT\SYSTEM32
\DRIVERS directory.
20 SoftICE Command Reference

SoftICE Commands
Example To select any of the last 32 breakpoints from current and previous SoftICE sessions,
use the following command.

BH
SoftICE Command Reference 21

SoftICE Commands
BL Windows 3.1, Windows 9x, Windows NT/2000/XP Manipulating Breakpoints

List all breakpoints.

Syntax BL

Use The BL command displays all breakpoints that are currently set. For each breakpoint,
BL lists the breakpoint index, breakpoint type, breakpoint state, and any conditionals
or breakpoint actions.

The state of a breakpoint is either enabled or disabled. If you disable the breakpoint,
an * (asterisk) appears after its breakpoint index. If SoftICE is activated due to a
breakpoint, that breakpoint is highlighted.

The BL command has no parameters.

Example To display all the breakpoints that have been defined, use the following command.

BL

• For Windows 3.1

Note: Breakpoint 1 has an * (asterisk) following it, showing that it was disabled.

• For Windows 9x and Windows NT/2000/XP

0 BPMB #30:123400 W EQ 0010 DR3 C=03

1* BPR #30:80022800 #30:80022FFF W C=01

2 BPIO 0021 W NE 00FF C=01

3 BPINT 21 AH=3D C=01

00) BPX #8:80102A4B IF (EAX==1) DO “DD
ESI”

01) * BPX _LockWindowInfo

02) BPMD #013F:0063F8A0 RW DR3

03) BPINT 2E IF (EAX==0x1E)
22 SoftICE Command Reference

SoftICE Commands
BMSG Windows 3.1, Windows 9x, Windows NT/2000/XP Breakpoints

Set a breakpoint on one or more Windows messages.

Syntax For Windows 3.1

BMSG window-handle [L] [begin-msg [end-msg]] [c=count]

For Windows 9x and Windows NT/2000/XP

BMSG window-handle [L] [begin-msg [end-msg]] [IF expression
[DO "command1;command2;..."]]

window-handle HWND value returned from CreateWindow or CreateWindowEX.

L Logs messages to the SoftICE Command window.

begin-msg Single Windows message or lower message number in a range of
Windows messages. If you do not specify a range with an end-msg,
only the begin-msg will cause a break.

Note: For both begin-msg and end-msg, the message numbers can be
specified either in hexadecimal or by using the actual ASCII names of
the messages, for example, WM_QUIT.

end-msg Higher message number in a range of Windows messages.

c= Breakpoint trigger count.

IF expression Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of SoftICE commands can execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftICE manual.
SoftICE Command Reference 23

SoftICE Commands
Use The BMSG command is used to set breakpoints on a window’s message handler that
will trigger when it receives messages that either match a specified message type, or
fall within an indicated range of message types.

• If you do not specify a message range, the breakpoint applies to ALL Windows
messages.

• If you specify the L parameter, SoftICE logs the messages into the Command
window instead of popping up when the message occurs.

When SoftICE does pop up on a BMSG breakpoint, the instruction pointer (CS:[E]IP) is
set to the first instruction of the message handling procedure. Each time SoftICE
breaks, the current message displays in the following format:

hWnd=xxxx wParam=xxxx lParam=xxxxxxxx msg=xxxx message-name

Note: These are the parameters that are passed to the message procedure. All numbers are
hexadecimal. The message-name is the Windows defined name for the message.

To display valid Windows messages, enter the WMSG command with no parameters.
To obtain valid window handles, use the HWND command.

You can set multiple BMSG breakpoints on one window-handle, but the message
ranges for the breakpoints may not overlap.

Example This command sets a breakpoint on the message handler for the Window that has the
handle 9BC. The breakpoint triggers and SoftICE pops up when the message handler
receives messages with a type within the range WM_MOUSEFIRST to
WM_MOUSELAST, inclusive. This range includes all of the Windows mouse messages.

:BMSG 9BC wm_mousefirst wm_mouselast

The next command places a breakpoint on the message handler for the Window with
the handle F4C. The L parameter causes SoftICE to log the breakpoint information to
the SoftICE Command window when the breakpoint is triggered, instead of popping
up. The message range on which the breakpoint triggers includes any message with a
type value less than or equal to WM_CREATE. You can view the output from this
breakpoint being triggered by popping into SoftICE and scrolling through the
command buffer.

:BMSG f4c L 0 wm_create
24 SoftICE Command Reference

SoftICE Commands
BPE Windows 3.1, Windows 9x, Windows NT/2000/XP Manipulating Breakpoints

Edit a breakpoint description.

Syntax BPE breakpoint-index

breakpoint-index Breakpoint index number.

Use The BPE command allows you to edit or replace an existing breakpoint. Use the
editing keys to edit the breakpoint description. Press Enter to save a new breakpoint
description. This command offers a quick way to modify the parameters of an existing
breakpoint.

Caution: BPE first clears the breakpoint before loading it into the edit line. If you then press
the Escape key, the breakpoint is cleared. To retain the original breakpoint and
create another one, use the BPT command, which uses the original breakpoint as
an editing template without first deleting it.

SoftICE expands any conditional expressions or breakpoint actions that are part of the
breakpoint expression.

Example This command allows the definition for breakpoint 1 to be edited.

:BPE 1

When the command is entered, SoftICE displays the existing breakpoint definition
and positions the input cursor just after the breakpoint address.

:BPE 1
:BPX 80104324 if (eax==1) do “dd esi”

To re-enter the breakpoint after editing, press the Enter key. To clear the breakpoint,
press the Escape key.
SoftICE Command Reference 25

SoftICE Commands
BPINT Windows 3.1 Breakpoints

Set a breakpoint on an interrupt.

Syntax BPINT int-number [al|ah|ax=value] [c=count]

int-number Interrupt number from 0 to 5Fh.

value Byte or word value.

c= Breakpoint trigger count.

Use Use the BPINT command to pop up SoftICE whenever a specified processor exception,
hardware interrupt, or software interrupt occurs. The AX register qualifying value
(AL=, AH=, or AX=) can be used to set breakpoints that trigger only when the AX
register matches the specified value at the time that the interrupt or exception occurs.
This capability is often used to selectively set breakpoints for DOS and BIOS calls. If an
AX register value is not entered, the breakpoint occurs anytime the interrupt or
exception occurs.

For Windows 9x and
Windows NT/2000/
XP, refer to BPINT
on page 28.

For breakpoints that trigger because of hardware interrupts or processor exceptions,
the instruction pointer (CS:EIP) at the time SoftICE pops up points to the first
instruction of the interrupt or exception handler routine pointed to by the interrupt
descriptor table (IDT.) If a software interrupt triggers the breakpoint, the instruction
pointer (CS:EIP) points at the INT instruction that caused the breakpoint.

BPINT only works for interrupts that are handled through the IDT.

In addition, Windows maps hardware interrupts, which by default map to vectors 8-
Fh and 70h-77h, to higher numbers to prevent conflicts with software interrupts. The
primary interrupt controller is mapped from vector 50h-57h. The secondary interrupt
controller is mapped from vector 58h-5Fh.

Example: IRQ0 is INT50h and IRQ8 is INT58h.

If a BPINT triggers because of a software interrupt instruction in a DOS VM, control
will be transferred to the Windows protected mode interrupt handler for protection
faults. This handler eventually calls down to the appropriate DOS VM’s interrupt
handler which is pointed to by the DOS VM’s Interrupt Vector Table. To go directly to
the DOS VM's interrupt handler after the BPINT has occurred on a software interrupt
instruction, use the following command:

G @$0:int-number*4

Example The following command defines a breakpoint for interrupt 21h. The breakpoint
occurs when DOS function call 4Ch (terminate program) is called. At the time SoftICE
pops up, the instruction pointer points to the INT instruction in the DOS VM.
26 SoftICE Command Reference

SoftICE Commands
BPINT 21 ah=4c

The next command sets a breakpoint that triggers on each and every tick of the
hardware clock. In general, this command is not recommended because it triggers so
often. At the time SoftICE pops up, the instruction pointer will be at the first
instruction of the Windows interrupt handler for interrupt 50h.

BPI0

See Also For Windows 9x and Windows NT/2000/XP, refer to BPINT on page 28.
SoftICE Command Reference 27

SoftICE Commands
BPINT Windows 9x, Windows NT/2000/XP Breakpoints

Set a breakpoint on an interrupt.

Syntax BPINT int-number [IF expression] [DO "command1;command2;..."]

int-number Interrupt number from 0 to FFh.

IF expression Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger

DO command Breakpoint action: A series of SoftICE commands that execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftICE manual.

Use Use the BPINT command to pop up SoftICE whenever a specified processor exception,
hardware interrupt, or software interrupt occurs. You can use the IF option to specify a
conditional expression that limits the interrupts that trigger the breakpoint. You can
use the DO option to specify SoftICE commands that execute any time the interrupt
breakpoint triggers.

For breakpoints that trigger for hardware interrupts or processor exceptions, the
instruction pointer (CS:EIP) at the time SoftICE pops up points to the first instruction
of the interrupt or exception handler routine pointed to by the interrupt descriptor
table (IDT.) If a software interrupt triggers the breakpoint, the instruction pointer
(CS:EIP) points to the INT instruction that caused the breakpoint.

BPINT only works for interrupts that are handled through the IDT.

For Windows 3.1,
refer to BPINT on
page 26.

If a software interrupt occurs in a DOS VM, control is transferred to a Windows
protected mode interrupt handler. This handler eventually calls down to the DOS
VM's interrupt handler which is pointed to by the DOS VM’s Interrupt Vector Table).
To go directly to the DOS VM's interrupt handler after the BPINT has occurred on a
software interrupt instruction, use the following command:

G @ &0:(int-number*4)
28 SoftICE Command Reference

SoftICE Commands
For Windows 9x

Windows maps hardware interrupts, which by default map to vectors 8-Fh and 70h-
77h, to higher numbers to prevent conflicts with software interrupts. The primary
interrupt controller is mapped from vector 50h-57h. The secondary interrupt
controller is mapped from vector 58h-5Fh.

Example: IRQ0 is INT50h and IRQ8 is INT58h.

For Windows NT/2000/XP

Windows NT/2000/XP maps hardware interrupts, which by default map to vectors 8-
Fh and 70h-77h, to higher numbers to prevent conflicts with software interrupts. The
primary interrupt controller is mapped from vector 30h-37h. The secondary interrupt
controller is mapped from vector 38h-3Fh.

Example: IRQ0 is INT30h and IRQ8 is INT38h

Example The following example results in Windows NT/2000/XP system call breakpoints
(software interrupt 2Eh) only being triggered if the thread making the system call has
a thread ID (TID) equal to the current thread at the time the command is entered
(_TID). Each time the breakpoint hits, the contents of the address 82345829h are
dumped as a result of the DO option.

BPINT 2e if tid==_tid do "dd 82345829"

See Also For Windows 3.1, refer to BPINT on page 26.
SoftICE Command Reference 29

SoftICE Commands
BPIO Windows 3.1, Windows 9x, Windows NT/2000/XP Breakpoints

Set a breakpoint on an I/O port access.

Syntax For Windows 3.1

BPIO port [verb] [qualifier value] [c=count]

For Windows 9x

BPIO [-h] port [verb] [IF expression] [DO "command1;command2;..."]

For Windows NT/2000/XP

BPIO port [verb] [IF expression] [DO "command1;command2;..."]

port Byte or word value.

verb

qualifier

value Byte, word, or dword value.

c= Breakpoint trigger count.

Value Description

R Read (IN)

W Write (OUT)

RW Reads and Writes

Qualifier
Value

Description

EQ Equal

NE Not Equal

GT Greater Than

LT Less Than

M Mask. A bit mask is
represented as a
combination of 1’s, 0’s
and X's. X's are don't-
care bits.

Qualifier, value, and
C= are not valid for
Windows 9x and
Windows NT/2000/
XP.
30 SoftICE Command Reference

SoftICE Commands
-h Use hardware debug registers to set a breakpoint in a virtual device
(VxD.) Available for Pentium-class processors on Windows 9x only.

IF expression Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of SoftICE commands can execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftICE manual.

Use Use the BPIO instruction to have SoftICE pop up whenever a specified I/O port is
accessed in the indicated manner. When a BPIO breakpoint triggers, the instruction
pointer (CS:EIP) points to the instruction following the IN or OUT instruction that
caused the breakpoint.

If you do not specify a verb, RW is the default.

For Windows 3.1

If you specify verb and value parameters, SoftICE compares the value you specify with
the actual data value read or written by the IN or OUT instruction that caused the
breakpoint. The value may be a byte, a word, or a dword. You can use the verb
parameter to specify a comparison of equality, inequality, greater-than-or-equal, less-
than-or-equal, or logical AND.

For Windows 3.1 and Windows 9x

Due to the behavior of the x86 architecture, BPIO breakpoints are only active while
the processor is executing in the RING 3 privilege level. This means that I/O activity
performed by RING 0 code, such as VxDs and the Windows virtual machine manager
(VMM), is not trapped by BPIO breakpoints. For Windows 9x only, you can use the -H
switch to force SoftICE to use the hardware debug registers. This lets you trap I/O
performed at Ring 0 in VxDs.

Windows virtualizes many of the system I/O ports, meaning that VxDs have registered
handlers that are called when RING 3 accesses are made to the ports. To get a list of
virtualized ports, use the TSS command. This command shows each hooked I/O port,
the address of its associated handler, and the name of the VxD that owns it. To see
how a particular port is virtualized, set a BPX command on the address of the I/O
handler.
SoftICE Command Reference 31

SoftICE Commands
For Windows NT/2000/XP

The BPIO command uses the debug register support provided on the Pentium,
therefore, I/O breakpoints are only available on Pentium-class machines.

When using debug registers for I/O breakpoints, all physical I/O instructions (non-
emulated) are trapped no matter what privilege level they are executed from. This is
different from using the I/O bit map to trap I/O, as is done for SoftICE running under
Windows 3.1 and Windows 9x (without the -H switch). The I/O bit map method can
only trap I/O done from user-level code, whereas a drawback of the debug register
method for trapping port I/O is that it does not trap emulated I/O such as I/O
performed from a DOS box.

Due to limitations in the number of debug registers available on x86 processors, a
maximum of four BPIOs can be set at any given time.

Example The following commands define conditional breakpoints for accesses to port 21h
(interrupt control 1’s mask register). The breakpoints only trigger if the access is a
write access, and the value being written is not FFh.

• For Windows 3.1, use the following command.

BPIO 21 w ne ff

• For Windows 9x and Windows NT/2000/XP, use the following command.

BPIO 21 w if (al!=0xFF)

Note: In the Windows NT/2000/XP example, you should be careful about intrinsic
assumptions being made about the size of the I/O operations being trapped. The
port I/O to be trapped is OUTB. An OUTW with AL==FFh also triggers the
breakpoint, even though in that case the value in AL ends up being written to
port 22h.

The following example defines a conditional byte breakpoint on reads of port 3FEh.
The breakpoint occurs the first time that I/O port 3FEh is read with a value that has
the two high-order bits set to 1. The other bits can be of any value.

• For Windows 3.1, use the following command.

BPIO 3fe r eq m 11xx xxxx

• For Windows 9x and Windows NT/2000/XP, use the following command.

BPIO 3fe r if ((al & 0xC0)==0xC0)
32 SoftICE Command Reference

SoftICE Commands
BPM Windows 3.1, Windows 9x, Windows NT/2000/XP Breakpoints

Set a breakpoint on memory access or execution.

Syntax For Windows 3.1

BPM[size] address [verb] [qualifier value] [debug-reg] [c=count]

For Windows 9x and Windows NT/2000/XP

BPM[size] address [verb] [debug-reg] [IF expression]
[DO "command1;command2;..."]

size Size specifies the range covered by this breakpoint. For example, if you
use double word, and the third byte of the dword is modified, a
breakpoint occurs. The size is also important if you specify the
optional qualifier.

verb

Value Description

B Byte

W Word

D Double Word

Value Description

R Read

W Write

RW Reads and Writes

X Execute
SoftICE Command Reference 33

SoftICE Commands
qualifier These qualifiers are only applicable to read and write breakpoints, not
execution breakpoints.

value Byte, word, or double word value, depending on the size you specify.

debug-reg

c= Breakpoint trigger count.

IF expression Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of SoftICE commands that execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftICE manual.

Use Use BPM breakpoints to have SoftICE pop up whenever certain types of accesses are
made to memory locations. You can use the size and verb parameters to be filter the
accesses according to their type, and you can use the DO parameter, on Windows NT/
2000/XP only, to specify arbitrary SoftICE commands that execute each time the
breakpoint is hit.

Qualifier
Value

Description

EQ Equal

NE Not Equal

GT Greater Than

LT Less Than

M Mask. A bit mask is represented as a
combination of 1’s, 0’s and X’s. The X’s
are “don't-care” bits.

Value

DR0

DR1

DR2

DR3

Qualifier, value, and
C= are not valid for
Windows 9x and
Windows NT/2000/
XP.
34 SoftICE Command Reference

SoftICE Commands
If you do not specify a debug register, SoftICE uses the first available debug register
starting from DR3 and working backwards. You should not include a debug register
unless you are debugging an application that uses debug registers itself, such as
another debugging tool.

If you do not specify a verb, RW is the default.

If you do not specify a size, B is the default.

For all the verb types except X, SoftICE pops up after the instruction that causes the
breakpoint to trigger has executed, and the CS:EIP points to the instruction in the
code stream following the trapped instruction. For the X verb, SoftICE pops up before
the instruction causing the breakpoint to trigger has executed, and the CS:EIP points
to the instruction where the breakpoint was set.

If you specify the R verb, breakpoints occur on read accesses and on write operations
that do not change the value of the memory location.

If you specify a verb of R, W or RW, executing an instruction at the specified address
does not cause the breakpoint to occur.

If you specify a size of W (BPMW), it is a word-sized memory breakpoint, and you
must specify an address that starts on a word boundary. If you specify a size of D
(BPMD), the memory breakpoint is dword sized, and you must specify an address that
starts on a double-word boundary.

For Windows 3.1

On Windows 3.1, you can use the count parameter to trigger a breakpoint only after it
has been hit a specified number of times. The default count value is 1, meaning that
the breakpoint triggers the first time the breakpoint condition is satisfied. The count is
reset each time the breakpoint triggers.

For Windows 9x

BPM breakpoints set in the range 400000 - 7FFFFFFF (WIN32 applications) are address-
context sensitive. That is, the breakpoints are triggered only when the address context
in which the breakpoint was set is active. If a BPM is set in a DLL that exists in
multiple contexts, the breakpoint is armed in all the contexts in which it exists. For
example, if you set a BPM X breakpoint in KERNEL32 it could break in any context
that contains KERNEL32.DLL.

For Windows NT/2000/XP

Any breakpoint set on an address below 80000000h (2 GB) is address-context
sensitive. That is, the breakpoint is triggered only when the address context in which
the breakpoint was set is active. This includes WIN32 and DOS V86 applications. Take
care to ensure you are in the correct context before setting a breakpoint.
SoftICE Command Reference 35

SoftICE Commands
Example The following example defines a breakpoint on memory byte access to the address
pointed at by ES:DI+1Fh. The first time that 10h is written to that location, the
breakpoint triggers.

• For Windows 3.1, use the following command.

BPM es:di+1f w eq 10

• For Windows 9x and Windows NT/2000/XP, use the following command.

BPM es:di+1f w if (*(es:di+1f)==0x10)

The next example defines an execution breakpoint on the instruction at address
CS:80204D20h. The first time that the instruction at the address is executed, the
breakpoint occurs.

• For Windows 3.1, Window 9x, and Windows NT/2000/XP, use the following
command.

BPM CS:80204D20 x

The following example defines a word breakpoint on a memory write. The breakpoint
occurs the first time that location Foo has a value written to it that sets the high order
bit to 0 and the low order bit to 1. The other bits can be any value.

• For Windows 3.1, use the following command.

BPMW foo e eq m 0xxx xxxx xxxx xxx1

This example sets a byte breakpoint on a memory write. The breakpoint triggers the
first time that the byte at location DS:80150000h has a value written to it that is
greater than 5.

• For Windows 3.1, use the following command.

BPM ds:80150000 w gt 5

• For Windows 9x and Windows NT/2000/XP, use the following command.

BPM ds:80150000 if (byte(*ds:80150000)>5)
36 SoftICE Command Reference

SoftICE Commands
BPR Windows 3.1, Windows 9x Breakpoints

Set a breakpoint on a memory range.

Syntax For Windows 3.1

BPR start-address end-address [verb] [c=count]

For Windows 9x

BPR start-address end-address [verb] [IF expression]
[DO "command1;command2;..."]

start-address Beginning of memory range.

end-address Ending of memory range.

verb

c= Breakpoint trigger count.

IF expression Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of SoftICE commands that can execute
when the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftICE manual.

Value Description

R Read

W Write

RW Reads and Writes

T Back Trace on Execution

TW Back Trace on Memory Writes
SoftICE Command Reference 37

SoftICE Commands
Use Use the BPR command to set breakpoints that trigger whenever certain types of
accesses are made to an entire address range.

There is no explicit range breakpoint for execution access. However, you can use the R
verb to set execution breakpoints on a range. An instruction fetch is considered a read
for range breakpoints.

If you do not specify a verb, W is the default.

The range breakpoint degrades system performance in certain circumstances. Any read
or write within the 4KB page that contains a breakpoint range is analyzed by SoftICE
to determine if it satisfies the breakpoint condition. This performance degradation is
usually not noticeable, however, degradation could be extreme in cases where there
are frequent accesses to the range.

The T and TW verbs enable back trace ranges on the specified range. They do not
cause breakpoints, but instead write information about all instructions that would
have caused the breakpoint to trigger to a log that can be displayed with the SHOW or
TRACE commands.

When a range breakpoint is triggered and SoftICE pops up, the current CS:EIP points
to the instruction that caused the breakpoint.

Range breakpoints are always set in the page tables that are active when you enter the
BPR command. Therefore, if range addresses are below 4MB, the range breakpoint will
be tied to the virtual machine that is current when BPR is entered. Because of this fact,
there are some areas in memory where range breakpoints are not supported. These
include the page tables, global descriptor table (GDT), interrupt descriptor tables
(IDT), local descriptor table (LDT), and SoftICE itself. If you try to set a range
breakpoint or back trace range over one of these areas, SoftICE returns an error.

There are two other data areas in which you should not place a range breakpoint, but,
if you do, SoftICE will not return an error. These are Windows level 0 stacks and
critical areas in the VMM. Windows level 0 stacks are usually in separately allocated
data segments. If you set a range over a level 0 stack or a critical area in VMM, you
could hang the system.

If the memory that covers the range breakpoint is swapped or moved, the range
breakpoint follows it.

For Windows 3.1

The count parameter can be used to trigger a breakpoint only after it has been hit a
specified number of times. The default count value is 1, meaning that the breakpoint
will trigger the first time the breakpoint condition is satisfied. The count is reset each
time the breakpoint triggers.

For Windows 9x

Due to a change in system architecture, BPRs are no longer supported in level 0 code.
Thus, you cannot use BPRs to trap VxD code.
38 SoftICE Command Reference

SoftICE Commands
Example The following example defines a breakpoint on a memory range. The breakpoint
occurs if there are any writes to the memory between addresses ES:0 and ES:1FFF:

BPR es:0 es:1fff w
SoftICE Command Reference 39

SoftICE Commands
BPRW Windows 3.1, Windows 9x Breakpoints

Set range breakpoints on Windows program or code segment.

Syntax For Windows 3.1

BPRW module-name | selector [verb]

For Windows 9x

BPRW module-name | selector [verb] [IF expression]
[DO "command1;command2;..."]

module-name Any valid Windows Module name that contains executable code
segments.

selector Valid 16-bit selector in a Windows program.

verb

IF expression Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of SoftICE commands can execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftICE manual.

Value Description

R Read

W Write

RW Reads and Writes

T Back Trace on Execution

TW Back Trace on Memory Writes
40 SoftICE Command Reference

SoftICE Commands
Use The BPRW command is a short-hand way of setting range breakpoints on either all of
the code segments, or on a single segment of a Windows program.

The BPRW command actually sets the same type of breakpoint as the BPR command.
Thus, if you enter the BL command after entering a BPRW command, you can see
where separate range breakpoints were set to cover the segments specified in the
BPRW command.

Valid selectors for a 16-bit Windows program can be obtained with the HEAP
instruction.

Clearing the breakpoints created by BPRW commands requires that each of these
range breakpoints be separately cleared with the BC command.

Note: The BPRW command can become very slow when using the T verb to back trace or
when using the command in conjunction with a CSIP qualifying range.

For Windows 9x

Due to a change in system architecture, BPRs are no longer supported in level 0 code.
For example, you cannot use BPRs to trap VxD code.

When a BPRW is set on a 32-bit application or DLL, a single range breakpoint is set
starting at the executable image base and ending at the image base plus image size.

Common Uses

The BPRW command is commonly used in the following ways.

• To set a back trace history range over an entire Windows application or DLL,
specify the module-name and the T verb.

• To set a breakpoint that triggers whenever a program executes, use the R verb. The
R verb breaks on execution as well as reads because an instruction fetch is
considered a read for range breakpoints.

• To use BPRW as a convenient form of BPR. Instead of requiring you to look up a
segment’s base and limit through the LDT or GDT commands, you only need to
know the segment selector.

Example The following example sets up a back trace range on all of the code segments in the
Program Manager. All instructions that the Program Manager executes are logged to
the back trace history buffer and can later be viewed with the TRACE and SHOW
commands.

BPRW progman t
SoftICE Command Reference 41

SoftICE Commands
BPT Windows 3.1, Windows 9x Manipulating Breakpoints

Use a breakpoint description as a template.

Syntax BPT breakpoint-index

breakpoint-index Breakpoint index number.

Use The BPT command uses an existing breakpoint description as a template for defining a
new breakpoint. The BPT command loads a template of the breakpoint description
into the edit line for modification. Use the editing keys to edit the breakpoint
description and type Enter to add the new breakpoint description. The original
breakpoint referenced by breakpoint-index is not altered. This command offers a quick
way to modify the parameters of an existing breakpoint.

When SoftICE displays a breakpoint description, it expands any conditional
expressions or breakpoint actions.

Example The following example moves a template of breakpoint 3 into the edit line, without
removing breakpoint 3. An example of the edit line output by the command follows.

BPT 3
:BPX 1b:401200 if (eax==1) do “dd esi”

Press Enter to add the new breakpoint.
42 SoftICE Command Reference

SoftICE Commands

BPX Windows 3.1, Windows 9x, Windows NT/2000/XP Breakpoints

F9

Set or clear a breakpoint on execution.

Syntax For Windows 3.1

BPX [address] [c=count]

For Windows 9x and Windows NT/2000/XP

BPX [address] [IF expression] [DO "command1;command2;..."]

address Linear address to set execution breakpoint.

c= Breakpoint trigger count.

IF expression Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of SoftICE commands that execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftICE manual.

Use Use the BPX command to define breakpoints that trigger whenever the instruction at
the specified address is executed.

You must set the address parameter to point to the first byte of the instruction opcode
of the instruction on which you want to set the breakpoint. If no address is specified
and the cursor is in the Code window when you begin to type the command, a
“point-and-shoot” breakpoint is set at the address of the instruction at the cursor
location in the Code window. If you define a point-and-shoot breakpoint at an
address where a breakpoint already exists, the existing breakpoint is cleared.

Note: Use the EC command (default key F6) to move the cursor into the Code window.

If the cursor is not in the Code window when you enter the BPX command, you must
specify an address. If you specify only an offset, the current CS register value is used as
the segment.
SoftICE Command Reference 43

SoftICE Commands
The BPX command normally places an INT 3 instruction at the breakpoint address.
This breakpoint method is used instead of assigning a debug register to make more
execution breakpoints available. If you need to use a breakpoint register, for example,
to set a breakpoint on code not yet loaded in a DOS VM, set an execution breakpoint
with the BPM command and specify X as the verb.

If you try to set a BPX at an address that is in ROM, a breakpoint register is
automatically used for the breakpoint instead of the normal placement of an INT 3 at
the target address. This method must be used because ROM cannot be modified.

The BPX command accepts 16-bit Windows module names as an address parameter.
When you enter a 16-bit module name, SoftICE sets a BPX-style breakpoint on every
exported entry point in the module.

Example: BPX KERNEL sets a breakpoint on every function in the 16-bit Windows module
KRNL386.EXE. This can be very useful is you need to break the next time any
function in a DLL is called.

SoftICE supports a maximum of 256 breakpoints when using this command.

For Windows 3.1 and Windows 9x

BPX breakpoints in DOS VMs are tied to the VM in which they were set. This is
normally what you would like when debugging a DOS program in a DOS VM.
However, there are situations when you may want the breakpoint to trigger at a
certain address no matter what VM is currently mapped in. This is usually true when
debugging in DOS code or in a TSR that was run before Windows was started. In these
cases, use a BPM breakpoint with the X verb instead of BPX.

For Windows 9x

BPX breakpoints set in the range 400000 - 7FFFFFFF (WIN32 applications) are address-
context sensitive. That is, they are only triggered when the context in which they
were set is active. If a breakpoint is set in a DLL that exists in multiple contexts,
however, the breakpoint will exist in all contexts.

For Windows NT/2000/XP

Any breakpoint set on an address below 80000000h (2 GB) is address-context
sensitive. That is, they are only triggered when the context in which they were set is
active. This includes WIN32, WIN16, and DOS V86 applications. Take care to ensure
you are in the correct context before setting a breakpoint.
44 SoftICE Command Reference

SoftICE Commands
Example This example sets an execution breakpoint at the instruction 10h bytes past the
current instruction pointer (CS:EIP).

BPX eip+10

This example sets an execution breakpoint at source line 1234 in the current source
file (refer to FILE on page 93).

BPX .1234

For Windows 9x and Windows NT/2000/XP

The following is an example of the use of a conditional expression to qualify a
breakpoint. In this case, the breakpoint triggers if the EAX register is within the
specified range.

BPX eip if eax > 1ff && eax <= 300

In this example, a breakpoint action is used to have SoftICE automatically dump a
parameter for a call. Every time the breakpoint is hit, the contents of the string
pointed to by the current DS:DX displays in the Data window.

BPX 80023455 do “db ds:dx”

See Also FILE
SoftICE Command Reference 45

SoftICE Commands
BSTAT Windows 9x, Windows NT/2000/XP Breakpoints

Display statistics for one or more breakpoints.

Syntax BSTAT [breakpoint-index]

breakpoint-index Breakpoint index number.

Use Use BSTAT to display statistics on breakpoint hits, misses, and whether breakpoints
popped up SoftICE or were logged. A breakpoint will be logged to the history buffer
instead of popping up SoftICE if it has a conditional expression that uses the BPLOG
expression macro.

Because conditional expressions are evaluated when the breakpoint is triggered, it is
possible to have evaluation run-time errors. For example, a virtual symbol may be
referenced when that symbol has not been loaded, or a reference to a symbol may not
be resolved because the memory is not present. In such cases, an error will be generated
and noted in the Status and Scode fields under the Misc. column in the BSTAT output.

Output For each breakpoint, SoftICE displays the following information.

BP # Breakpoint index, and if disabled, an * (asterisk).

Totals Category:
Hits Total number of times SoftICE has evaluated the breakpoint.

Breaks Total number of times the breakpoint has evaluated TRUE, and
SoftICE has either popped up or logged the breakpoint.

Popups Total number of times the breakpoint caused SoftICE to pop up.

Logged Total number of times the breakpoint has been logged.

Misses Total number of times the breakpoint evaluated to FALSE, and no
breakpoint action was taken.

Errors Total number of times that the evaluation of a breakpoint resulted in
an error.

Current Category:
Hits Current number of times the breakpoint has evaluated TRUE, but did

not pop up because the count had not expired. (Refer to expression
macro BPCOUNT.)

Misses Current number of times the breakpoint has evaluated FALSE or the
breakpoint count has not expired.
46 SoftICE Command Reference

SoftICE Commands
Miscellaneous Category:
Status SoftICE internal status code for the last time the breakpoint was

evaluated, or zero if no error occurred.

Scode Last non-zero SoftICE internal status code, or zero if no error has
occurred.

Cond. Yes if the breakpoint has a conditional expression, otherwise No.

Action Yes if the breakpoint has a defined breakpoint action, otherwise No.

Example The following is an example using the BSTAT command for breakpoint #0:

:BSTAT 0

Breakpoint Statistics for #00
BP # *00

Totals
Hits 2
Breaks 2
Popups 2
Logged 0
Misses 0
Errors 0

Current
Hits 0
Misses 0

Misc
Status 0
SCode 0
Cond. No
Action Yes

See Also For more information on breakpoint evaluation, refer to Using SoftICE.
SoftICE Command Reference 47

SoftICE Commands
C Windows 3.1, Windows 9x, Windows NT/2000/XP Miscellaneous

Compare two data blocks.

Syntax C start-address L length start-address-2

start-address Start of first memory range.

L length Length in bytes.

start-address-2 Start of second memory range.

Use The memory block specified by start-address and length is compared to the memory
block specified by the second start address.

When a byte from the first data block does not match a byte from the second data
block, SoftICE displays both bytes and their addresses.

Example The following example compares 10h bytes starting at memory location
DS:805FF000h to the 10h bytes starting at memory location DS:806FF000h.

C ds:805ff000 L 10 ds:806ff000
48 SoftICE Command Reference

SoftICE Commands
CLASS Windows 3.1, Windows 9x, Windows NT/2000/XP System Information

Display information on Windows classes.

Syntax For Windows 3.1

CLASS [module-name]

For Windows 9x

CLASS [-x][task-name]

For Windows NT/2000/XP

CLASS [-x][process-type | thread-type | module-type | class-
name]

module-name Any currently loaded Windows module. Not all Windows modules
have classes registered.

-x Display complete Windows 9x or Windows NT/2000/XP internal
CLASS data structure, expanding appropriate fields into more
meaningful forms.

task-name Any currently executing 16- or 32-bit task.

process-type Process name, process ID, or process handle.

thread-type Thread ID or thread address (KTEB).

module-type Module name or module handle.

class-name Name of a registered class window.

Use For Windows 9x

The operating system maintains the standard window classes in the 16-bit user
module (per Windows 3.1). The operating system maintains all other window classes
in separate lists on behalf of each process. Each time a process or one of its DLLs
registers a new window class, registration places that class on one of two lists:

• The application global list contains classes registered with the CS_GLOBAL
attribute. They are accessible to the process or any of its DLLs.

• The application private list contains non-global classes. Only the registering
module can access them.
SoftICE Command Reference 49

SoftICE Commands
Finally, any process or DLL that attempts to superclass one of the standard window
controls, for example, LISTBOX, receives a copy of that class. The copy resides in a
process-specific system-superclass list. By making a copy of the standard class, a
process or DLL can superclass any standard windows control without affecting other
processes in the system.

The process-specific class lists display in the following order:

• application private

• application global

• system superclassed

In the output, dashed lines separate each list.

For Windows NT/2000/XP

The architecture of class information under Windows NT/2000/XP is similar to that of
Windows 9x in that class information is process specific and the operating system
creates different lists for global and private classes. Beyond this, the two operating
systems have significant differences in how super-classing a registered window class is
implemented.

Under Windows NT/2000/XP, registered window classes are considered templates that
describe the base characteristics and functionality of a window (similar to the C++
notion of an abstract class). When a window of any class is created, the class template
is instanced by making a physical copy of the class structure. This instanced class is
stored with the windows instance data. Any changes to the instanced class data does
not affect the original class template. This concept is further extended when various
members of the windows instanced class structure are modified. When this occurs, the
instanced class is instanced again, and the new instance points to the original
instance. Registered classes act as templates from which instances of a particular class
can be created; in effect this is object inheritance. This inheritance continues as
changes are made to the base functionality of the class.

If you do not specify the type parameter, the current context is assumed because the
class information is process specific. A process-name always overrides a module of the
same name. To search by module when there is a name conflict, use the module
handle (base address or module database selector). Also, module names are always
context sensitive. If the module is not loaded in the current context (or the CSRSS
context), the CLASS command interprets the module name as a class name instead.
50 SoftICE Command Reference

SoftICE Commands
Output For each class, the following information is shown:

Class Handle Offset of a data structure within USER. Refers to windows of this
class.

Class Name Name that was passed when the class was registered. If no name was
passed, the atom displays.

Owner Module that has registered this window class.

Window Procedure Address of the window procedure for this window class.

Styles Bitmask of flags specified when the class was registered.

Example For Windows 3.1

The following example uses the CLASS command to display all the classes registered
by the MSWORD module.

:CLASS msword

Note: There are symbols for all of the window procedures, because SoftICE includes all of
the exported symbols from USER.EXE. If a symbol is not available for the window
procedure, a hexadecimal address displays.

Handle Name Owner Window Procedure

0F24 #32772 USER TITLEWNDPROC

0EFC #32771 USER SWITCHWNDPROC

0ED4 #32769 USER DESKTOPWNDPROC

0E18 MDIClient USER MDICLNTWNDPROC

0DDC ComboBox USER COMBOBXWNDPROC

0DA0 ComboLBox USER LBBOXTLWNDPROC

0D64 ScrollBar USER SBWNDPROC

0D28 ListBox USER LBOXCTLWNDPROC

0CF0 Edit USER EDITWNDPROC
SoftICE Command Reference 51

SoftICE Commands
CLS Windows 3.1, , Windows NT/2000/XP Window Control

Alt-F5

Clear the Command window.

Syntax CLS

Use The CLS command clears the SoftICE Command window and all display history, and
moves the prompt and the cursor to the upper lefthand corner of the Command
window.
52 SoftICE Command Reference

SoftICE Commands
CODE Windows 3.1, Windows 9x, Windows NT/2000/XP Customization

Display instruction bytes.

Syntax CODE [on | off]

Use The CODE command controls whether or not the actual hexadecimal bytes of an
instruction display when the instruction is unassembled.

• If CODE is ON, the instruction bytes display.

• If CODE is OFF, the instruction bytes do not display.

• Use CODE with no parameters to display the current state of CODE.

The default is CODE mode OFF.

Example The following command causes the actual hexadecimal bytes of an instruction to
display when the instruction is unassembled.

CODE on

See Also SET
SoftICE Command Reference 53

SoftICE Commands
COLOR Windows 3.1, Windows 9x, Windows NT/2000/XP Customization

Display or set the screen colors.

Syntax COLOR [normal bold reverse help line]

normal Foreground/background attribute that displays normal text.
Default = 07h grey on black.

bold Foreground/background attribute that displays bold text.
Default = 0Fh white on black.

reverse Foreground/background attribute that displays reverse video text.
Default = 71h blue on grey.

help Foreground/background attribute that displays the help line
underneath the Command window.
Default = 30h black on cyan.

line Foreground/background attribute that displays the horizontal lines
between the SoftICE windows.
Default = 02h green on black.

Use Use the COLOR command to customize the SoftICE screen colors on a color monitor.
Each of the five specified colors is a hexadecimal byte where the foreground color is in
bits 0-3 and the background color is in bits 4-6. This is identical to the standard CGA
attribute format in which there are 16 foreground colors and 8 background colors.

The actual colors represented by the 16 possible codes are listed in the following table.

Code Color Code Color

0 black A light green

1 blue B light cyan

2 green C light red

3 cyan D light magenta

4 red E yellow

5 magenta F white
54 SoftICE Command Reference

SoftICE Commands
Example The command below makes the following color assignments.

COLOR 7 f 71 30 2

6 brown

7 grey

8 dark grey

9 light blue

Code Color Code Color

normal text grey on black

bold text white on black

reverse video text blue on grey

help line black on cyan

horizontal line green on black
SoftICE Command Reference 55

SoftICE Commands
CPU Windows 3.1, Windows 9x, Windows NT/2000/XP System Information

Display the registers.

Syntax CPU [-i]

-i Displays the I/O APIC.

Use The CPU command shows all the CPU registers (general, control, debug, and
segment).

For Windows NT/2000/XP

If your PC contains a multi-processor motherboard that uses an I/O Advanced
Program Interrupt Controller (APIC) as an interrupt controller, the CPU command
displays the CPU local registers and the I/O APIC information.

Example The following example lists the sample output from the CPU command under
Windows 9x or Windows NT/2000/XP on systems that do not use an I/O APIC:

Processor 00 Registers

CS:EIP=0008:8013D7AE SS:ESP=0010:8014AB7C
EAX=00000041 EBX=FFDFF000 ECX=00000041 EDX=80010031
ESI=80147940 EDI=80147740 EBP=FFDFF600 EFL=00000246
DS=0023 ES=0023 FS=0030 GS=0000

CR0=8000003F PE MP EM TS ET NE PG
CR2=C13401D6
CR3=00030000
CR4=00000011 VME PSE
DR0=00000000
DR1=00000000
DR2=00000000
DR3=00000000
DR6=FFFF0FF0
DR7=00000400
EFL=00000246 PF ZF IF IOPL=0
56 SoftICE Command Reference

SoftICE Commands
The following example lists the sample output from the CPU command under
Windows NT/2000/XP on a system that uses an I/O APIC:

Processor 00 Registers

CS:EIP=0008:8013D7AE SS:ESP=0010:8014AB7C
EAX=00000041 EBX=FFDFF000 ECX=00000041 EDX=80010031
ESI=80147940 EDI=80147740 EBP=FFDFF600 EFL=00000246
DS=0023 ES=0023 FS=0030 GS=0000

CR0=8000003F PE MP EM TS ET NE PG
CR2=C13401D6
CR3=00030000
CR4=00000011 VME PSE
DR0=00000000
DR1=00000000
DR2=00000000
DR3=00000000
DR6=FFFF0FF0
DR7=00000400
EFL=00000246 PF ZF IF IOPL=0

--------Local apic--------
 ID: 0
 Version: 30010
 Task Priority: 41
 Arbitration Priority: 41
 Processor Priority: 41
 Destination Format: FFFFFFFF
 Logical Destination: 1000000
 Spurious Vector: 11F
 Interrupt Command: 3000000:60041
 LVT (Timer): 300FD
 LVT (Lint0): 1001F
 LVT (Lint1): 84FF
 LVT (Error): E3
 Timer Count: 3F94DB0
 Timer Current: 23757E0
 Timer Divide: B
SoftICE Command Reference 57

SoftICE Commands
The following example lists the sample output from the CPU -i command under
Windows NT/2000/XP on a system that uses an I/O APIC:

Inti Vector Delivery Status Trigger Dest Mode
Destination
01 91 Low. Pri Idle Edge Logical 01000000
03 61 Low. Pri Idle Edge Logical 01000000
04 71 Low. Pri Idle Edge Logical 01000000
08 D1 Fixed Idle Edge Logical 01000000
0C 81 Low. Pri Idle Edge Logical 01000000
0E B1 Low. Pri Idle Edge Logical 01000000
I/O unit id register: 0E000000
I/O unit version register: 000F0011

See Also PAGE
58 SoftICE Command Reference

SoftICE Commands
CR Windows 3.1 System Information

Display the control registers.

Syntax CR

Use The CR command displays the contents of the three control registers (CR0, CR2, and
CR3), and the debug registers in the Command window. CR0 is the processor control
register. CR2 is the register in which the processor stores the most recently accessed
address that resulted in a page fault. CR3 contains the physical address of the system’s
page directory. (Refer to PACKET on page 178.)

Example The following example lists the sample output from a CR command:

CR0=8000003B PE MP TS ET NE PG

CR2=000CC985

CR3=002FE000

CR4=00000008 DE

DR1=00000000

DR2=00000000

DR3=00000000

DR6=FFFF0FF0

DR7=00000400

See Also PAGE
SoftICE Command Reference 59

SoftICE Commands
CSIP Windows 3.1 Breakpoints

Set the instruction pointer (CS:EIP) memory range qualifier for all breakpoints in 16-
bit programs only.

Syntax CSIP [off | [not] start-address end-address | [not] Windows-
module-name]

off Turns off CSIP checking.

not Breakpoint only occurs if the CS:EIP is outside the specified range or
module.

start-address Beginning of memory range.

end-address End of memory range.

Windows-module-name If you specify a valid Windows-module-name instead of a memory
range, the range covers all code areas in the specified Windows
module.

Use For Windows 3.1

The CSIP command qualifies breakpoints so that the code that triggers the breakpoint
must come from a specified memory range. This function is useful when a program is
suspected of accidentally modifying memory outside of its boundaries.

When breakpoint conditions are met, the instruction pointer (CS:EIP) is compared to
the specified memory range. If the instruction pointer is within the range, the
breakpoint activates. To activate the breakpoint only when the instruction pointer
(CS:EIP) is outside the range, use the NOT parameter.

Because 16-bit Windows programs are typically broken into several code segments
scattered throughout memory, you can input a Windows module name as the range. If
you enter a module name, the range covers all code segments in the specified
Windows program or DLL.

When you specify a CSIP range, it applies to ALL breakpoints that are currently active.

If you do not specify parameters, the current memory range displays.

For Windows 9x and Windows NT/2000/XP

For 32-bit code, this command is obsolete. Use conditional expressions to achieve this
functionality. CSIP still works for 16-bit code and modules.
60 SoftICE Command Reference

SoftICE Commands
Example The following command causes breakpoints to occur only if the CS:EIP is NOT in the
ROM BIOS when the breakpoint conditions are met.

CSIP not $f000:0 $ffff:0

The following command causes breakpoints to occur only if the Windows program
CALC causes them.

CSIP calc
SoftICE Command Reference 61

SoftICE Commands
D Windows 3.1, Windows 9x, Windows NT/2000/XP Display/Change Memory

Display memory.

Syntax For Windows 3.1

D[size] [address]

For Windows 9x and Windows NT/2000/XP

D[size] [address [l length]]

size

address Starting address of the memory you want to display.

l length Displays length number of bytes to the Command window

Use The D command displays the memory contents at the specified address.

SoftICE displays the memory contents in the format you specify in the size parameter.
If you do not specify a size, SoftICE uses the last size specified. For the byte, word, and
double word hexadecimal formats, the ASCII representation is displayed.

For the dword format, data may be displayed in two different ways.

• If the displayed segment is a 32-bit segment, the dwords display as 32-bit
hexadecimals (eight hexadecimal digits).

• If the displayed segment is a 16-bit segment (VM segment or LDT selector), the
dwords display as 16:16 pointers (four hexadecimal digits, a colon, (':'), and four
more hexadecimal digits).

If you do not specify an address, the command displays memory at the next
sequential address after the last byte displayed in the current Data window.

Value Description

B Byte

W Word

D Double Word

S Short Real

L Long Real

T 10-Byte Real
62 SoftICE Command Reference

SoftICE Commands
If the Data window is visible, the data displays there. If the Data window is not visible,
it displays in the Command window. The Command window displays either eight
lines of data or one less than the length of the window.

For floating point values, numbers display in the following format:

[leading sign] decimal-digits . decimal-digits E sign exponent

The following ASCII strings can also display for real formats:

For Windows 9x and Windows NT/2000/XP

If an L parameter followed by a length is specified, SoftICE displays the requested
number of bytes to the Command window regardless of whether the Data window is
visible. SoftICE always displays whole rows. If the length is not a multiple of rows,
SoftICE will round up. This command is useful when dumping large amounts of data
to the Command window for the purpose of logging it to a file.

Example Displays the memory starting at address ES:1000h in word format and in ASCII
format.

DW es:1000

For Windows 9x and Windows NT/2000/XP

The following command displays 4KB of memory starting at address SS:ESP in dword
format. The data is displayed in the Command window.

DD ss:esp l 1000

String Exponent Mantissa Sign

Not A Number all 1’s NOT 0 +/-

Denormal all 0’s NOT 0 +/-

Invalid 10 byte only with mantissa=0

Infinity all 1's 0 +/-
SoftICE Command Reference 63

SoftICE Commands

DATA Windows 3.1, Windows 9x, Windows NT/2000/XP Window Control

Windows 3.1 - F12

Display another Data window.

Syntax DATA [window-number]

window-number Number of the Data window you want to view.
This can be 0, 1, 2, or 3.

Use SoftICE supports up to four Data windows. Each Data window can display a different
address and/or format. Only one Data window is visible at any time. Specifying DATA
without a parameter just switches to the next Data window. The windows are
numbered from 0 to 3. This number displays on the righthand side of the line above
the Data window. If you specify a window-number after the DATA command, SoftICE
switches to display that window. The DATA command is most useful when assigned to
a function key. See Chapter 10, “Customizing SoftICE,” in the Using SoftICE manual.

Example The following command changes the visible Data window to Data window number 3.

DATA 3
64 SoftICE Command Reference

SoftICE Commands
DEVICE Windows 98, Windows Me, Windows NT/2000/XP System Information

Display system information on Windows 98, Windows Me, and
Windows NT/2000/XP devices.

Syntax DEVICE [device-name | pdevice-object]

device-name Object directory name of the device.

pdevice-object Object address of the device.

Use The DEVICE command displays information on Windows device objects. If the
DEVICE command is entered without parameters, summary information displays for
all device objects found in the \Device directory. However, if a specific device object is
indicated, either by its object directory name (device-name) or object address
(pdevice-object), more detailed information displays.

If a directory is not specified with a device-name, the DEVICE command attempts to
locate the named device object in the entire object tree. When displaying information
about a specified device, the DEVICE command displays fields of the DEVICE_OBJECT
data structure as defined in NTDDK.H.

Output The following fields are shown as summary information:

RefCnt Device object’s reference count.

DrvObj Pointer to the driver object that owns the device object.

NextDev Pointer to the next device object on the linked list of device objects
that were created by the same driver.

AttDev Pointer to a device object that has been attached to the displayed
object via an IoAttachDeviceObject call. Attached device objects are
essentially IRP filters for the devices to which they are attached.

CurIrp Pointer to the IRP currently being serviced for the device object by the
device object’s driver.

DevExten Pointer to device driver-defined device object extension data structure.

Name Name of the device, if it has one.

The following are some fields shown when detailed information is printed:

Flags Definition of the device object’s attributes such as whether I/O
performed on the device is buffered or not.
SoftICE Command Reference 65

SoftICE Commands
Vpb Pointer to the device’s associated volume parameter block.

Device Type User-defined or pre-defined value that SoftICE translates to a name.

Example The following example shows the DEVICE command output with no parameters. It
results in SoftICE printing summary information on all device objects in the \Device
object directory.

DEVICE

The following example uses the DEVICE command with the BEEP device object’s
name.

RefCnt DrvObj NextDev AttDev CurIrp DevEx-
ten

Name

0000000
0

FD8CD91
0

0000000
0

0000000
0

0000000
0

FD8CD86
8

Beep

0000001
5

FD89E73
0

0000000
0

0000000
0

0000000
0

FD89C96
8

NwlnkIpx

0000000
1

FD89217
0

0000000
0

0000000
0

0000000
0

FD8980E
8

Netbios

0000000
0

FD89D73
0

0000000
0

0000000
0

0000000
0

FD897D6
8

Ip

0000000
1

FD8CBB7
0

0000000
0

0000000
0

FD8DAA0
8

FD8CAF8
8

KeyboardClass
0

0000000
1

FD8C9F3
0

0000000
0

0000000
0

0000000
0

FD8C60F
0

Video0

0000000
1

FD8C9C9
0

0000000
0

0000000
0

0000000
0

FD8C50F
8

Video1

0000000
1

FD8CC53
0

0000000
0

0000000
0

FD8DAC0
8

FD8CBF8
8

PointerClass0

0000000
1

FD8DB55
0

FD8D303
0

0000000
0

0000000
0

FD8D3FC
8

RawTape

0000000
7

FD89D73
0

FD897CB
0

0000000
0

0000000
0

FD897C4
8

Tcp

0000000
1

FD88A99
0

0000000
0

0000000
0

0000000
0

FD88A8A
8

ParallelPort0

0000000
3

FD8B373
0

0000000
0

0000000
0

0000000
0

FD8A40E
8

NE20001
66 SoftICE Command Reference

SoftICE Commands
DEVICE beep

RefCnt DrvObj NextDev AttDev CurIrp DevExten Name
00000000 FD8CD910 00000000 00000000 00000000 FD8CD868 Beep
Timer* : 00000000
Flags : 00000044 DO_BUFFERED_IO | DO_DEVICE_HAS_NAME
Characteristics : 00000000
Vpb* : 00000000
Device Type : 1 FILE_DEVICE_BEEP
StackSize : 1
&Queue : FD8CD7E4
AlignmentRequirement: 00000000 FILE_BYTE_ALIGNMENT
&DeviceQueue : FD8CD810
&Dpc : FD8CD824
ActiveThreadCount : 00000000
SecurityDescriptor* : E10E2528
&DeviceLock : FD8CD84C
SectorSize : 0000
Spare1 : 0000
DeviceObjectExtn* : FD8CD8B8
Reserved* : 00000000
SoftICE Command Reference 67

SoftICE Commands
DEX Windows 3.1, Windows 9x, Windows NT/2000/XP Customization

Display or assign a Data window expression.

Syntax DEX [data-window-number [expression]]

data-window-number Number from 0 to 3 indicating which Data window to use. This
number displays on the righthand side of the line above the Data
window.

expression Data expression to assign to the Data window.

Use The DEX command assigns a data expression to any of the four SoftICE Data
windows. Every time SoftICE pops up, the expressions are re-evaluated and the
memory at that location displays in the appropriate Data window. This is useful for
displaying changing memory locations where there is always a pointer to the memory
in either a register or a variable. The data displays in the current format of the Data
window: either byte, word, dword, short real, long real, or 10-byte real. This command
is the same as entering the command D expression every time SoftICE pops up.

If you type DEX without parameters, it displays all the expressions currently assigned
to the Data windows.

To unassign an expression from a Data window, type DEX followed by the data-
window-number, then press Enter.

To cycle through the four Data windows, use the DATA command. (Refer to DATA on
page 64.)

Example Every time SoftICE pops up, Data window 0 contains the contents of the stack.

DEX 0 ss:esp

Every time SoftICE pops up, Data window 1 contains the contents of the memory
pointed to by the public variable PointerVariable.

DEX 1 @pointervariable

See Also DATA
68 SoftICE Command Reference

SoftICE Commands
DIAL Windows 9x, Windows NT/2000/XP Customization

Redirect console to modem.

Syntax DIAL [on [com-port] [baud-rate] [i=init-string] [p=number] | off]

com-port If no com-port is specified, the default is COM1.

baud-rate Baud-rate to use for modem communications. The default is 38400.
The rates you can specify are 1200, 2400, 4800, 9600, 19200, 23040,
28800, 38400, 57000, and 115000.

i=init-string Optional modem initialization string.

p=number Telephone number.

Use The DIAL command initiates a call to a remote machine via a modem. The remote
machine must be running SERIAL32.EXE (SERIAL.EXE on an MSDOS machine) and be
waiting for a call. Once a connection is established, SoftICE input is received from the
remote machine and SoftICE output is sent to the remote machine. No input is
accepted from the local machine except for the pop-up hot key sequence. For a
detailed explanation of this procedure, refer to Chapter 9, “Using SoftICE with a
Modem” in the Using SoftICE manual.

You can specify the modem initialization string and phone number within the SoftICE
configuration settings, so that the strings they specify become the defaults for the i
and p command-line parameters. Refer to Chapter 10, “Customizing SoftICE” in the
Using SoftICE manual.

On the remote machine, you can use the SERIAL command to specify the com-port,
baud-rate, and init parameters for SERIAL.EXE.

Example The following is an example of the DIAL command:

DIAL on 2 19200 i=atx0 p=9,555-5555,,,1000

This command tells SoftICE to first initialize the modem on com-port 2 at a baud rate
of 19200 with the string, “atx0,” and then to make a call through the modem to the
telephone number 9-555-5555 extension 1000. Commas can be used in the phone
number, just as with traditional modem software, to insert delays into the dialing
sequence.
SoftICE Command Reference 69

SoftICE Commands
The following example shows the syntax expected by SERIAL.EXE when running it on
a remote machine so that it answers a DIAL command from the local machine.

SERIAL on [com-port] [baud-rate] i"init-string"

The following SERIAL.EXE command-line uses a modem initialization string of “atx0”
to answer a call (at 19200 bps) through a modem on the remote machine’s COM1
serial port. The command line is entered on the remote machine.

SERIAL on 1 19200 i"atx0"

When the remote debugging session is complete, enter the DIAL OFF command from
the remote machine to terminate the debugging session and hang up the modem.

The following are examples of the Dial initialization and Phone number strings in the
Remote Debugging SoftICE configuration settings:

Dial initialization string: atx0
Telephone number string: 9,555-5555,,,1000

With this Dial initialization string in place, SoftICE always initializes the modem
specified in DIAL commands with “ATX0”, unless the DIAL command explicitly
specifies a different initialization string.

With this Phone initialization string in place, SoftICE always dials the specified
number when executing DIAL commands, unless the DIAL command explicitly
specifies a different phone number.

See Also ANSWER, SERIAL, and Chapter10, “Customizing SoftICE” in the Using SoftICE
manual.
70 SoftICE Command Reference

SoftICE Commands
DPC Windows NT/2000/XP System Information

Display Deferred Procedure Calls.

Syntax DPC [address]

address Location of a delayed procedure call.

Use The DPC command displays information about deferred procedure calls that are
current in the system. If you enter DPC without parameters, SoftICE list all delayed
procedure call that are queued for delivery in the system. For each DPC, SoftICE lists
the following information:

If you provide the address of a particular DPC, SoftICE displays the following
information for that DPC:

Example The following command displays a listing of all deferred procedure calls current in the
system.

DPC

See Also APC
SoftICE Command Reference 71

SoftICE Commands
DRIVER Windows 98, Windows Me, Windows NT/2000/XP System Information

Display information on Windows 98, Windows Me, or Windows NT/2000/XP drivers.

Syntax DRIVER [driver-name | pdriver-object]

driver-name Object directory name of the driver.

pdriver-object Object address of the driver.

Use The DRIVER command displays information on Windows drivers. If the DRIVER
command is entered without parameters, summary information is shown for all
drivers found in the \Driver directory. However, if a specific driver is indicated, either
by its object directory name (driver-name), or by its object address (pdriver-object),
more detailed information is displayed.

If a directory is not specified with the driver-name, the DRIVER command attempts to
locate the named driver in the entire object tree. When displaying detailed
information about a specified driver, the DRIVER command displays the fields of the
DRIVER_OBJECT data structure as defined in NTDDK.H.

Output The following fields are shown as summary information:

Start Base address of the driver.

Size Driver’s image size.

DrvSect Pointer to driver module structure.

Count Number of times the registered reinitialization routine has been
invoked for the driver.

DrvInit Address of the driver's DriverEntry routine.

DrvStaIo Address of the driver's StartIo routine.

DrvUnld Address of the driver's Unload routine.

Name Name of the driver.

The following is shown when detailed information is printed:

DeviceObject Pointer to the first device object on the driver’s linked list of device
objects that it owns.

Flags Field is a bit-mask of driver flag. The only flag currently documented
is DRVO_UNLOAD_INVOKED.
72 SoftICE Command Reference

SoftICE Commands
FastIoDispatch Pointer to the driver’s fast I/O dispatch data structure, if it has one.
File System Drivers typically have a fast I/O routines defined for them.
Information on the structure can be found in NTDDK.H.

Handler Addresses Upon initialization, driver’s can register handlers that are called when
the driver receives specific IRP request types. Each handler address is
listed along with the IRP major function it processes for the driver.

Example The following example shows the output of the DRIVER command with no
parameters. This results in SoftICE printing summary information on all the drivers in
the \Driver object directory.

DRIVER

The following is an example of the DRIVER command with the BEEP.SYS driver
object’s name as a parameter. From the listing it can be seen that the driver’s first
device object is at FD8CD7B0h, and that it has 4 IRP handler routines registered.

DRIVER beep

Start Size DrvSect Count DrvInit DrvStaIo DrvUnld Name
FB030000 00000E20 FD8CDA88 00000000 FB0302EE FB0305E8 FB0306E2 Beep
DeviceObject* : FD8CD7B0
Flags : 00000000
HardwareDatabase : \REGISTRY\MACHINE\HARDWARE\DESCRIPTION\SYSTEM
FastIoDispatch* : 00000000
IRP_MJ_CREATE at 8:FB03053C
IRP_MJ_CLOSE at 8:FB03058A
IRP_MJ_DEVICE_CONTROL at 8:FB0304C6
IRP_MJ_CLEANUP at 8:FB030416

Start Size DrvSect Count DrvInit DrvStaI
o

DrvUnld Name

FB03000
0

00000E2
0

FD8CDA8
8

0000000
0

FB0302E
E

FB0305E
8

FB0306E
2

Beep

FB13000
0

0000D3A
0

FD89E8C
8

0000000
0

FB13B7B
F

0000000
0

FB13678
9

NwlnkIp
x

FB05000
0

0000232
0

FD8CD1A
8

0000000
0

FB050AF
2

FB0508B
E

0000000
0

Mou-
class

FB06000
0

0000232
0

FD8CBC4
8

0000000
0

FB060AF
2

FB0608C
0

0000000
0

Kbd-
class

FB07000
0

0000386
0

FD8CAE4
8

0000000
0

FB070B0
C

0000000
0

0000000
0

VgaSave
SoftICE Command Reference 73

SoftICE Commands
E Windows 3.1, Windows 9x, Windows NT/2000/XP Display/Change Memory

Edit memory.

Syntax E[size] [address [data-list]]

size

address

data-list List of data objects of the specified size (bytes, words, double words,
short reals, long reals, or 10-byte reals) or quoted strings separated by
commas or spaces. The quoted string can be enclosed with single
quotes or double quotes.

Use If you do not specify data-list, the cursor moves into the Data window where you can
edit the memory in place. If you specify a data-list, the memory is immediately
changed to the new values.

If the Data window is not currently visible, it is automatically made visible. Both
ASCII and hexadecimal edit modes are supported. To toggle between the ASCII and
hexadecimal display areas, press the Tab key.

If you do not specify a size, the last size used is assumed.

Enter valid floating point numbers in the following format:

[leading sign] decimal-digits . decimal-digits E sign exponent

Example: A valid floating point number is -1.123456 E-19

Value Description

B Byte

W Word

D Double Word

S Short Real

L Long Real

T 10-Byte Real
74 SoftICE Command Reference

SoftICE Commands
Example The following command moves the cursor into the Data window for editing. The
starting address in the Data window is at DS:1000h, and the data displays in
hexadecimal byte format as well as in ASCII. The initial edit mode is hexadecimal.

EB ds:1000

The next command moves the null terminated ASCII string ’Test String’ into memory
at location DS:1000h.

EB ds:1000 ’Test String’,0

This command moves the short real number 3.1415 into the memory location
DS:1000h.

ES ds:1000 3.1415
SoftICE Command Reference 75

SoftICE Commands

EC Windows 3.1, Windows 9x, Windows NT/2000/XP Window Control

F6

Enter or exit the Code window.

Syntax EC

Use The EC command toggles the cursor between the Code window and the Command
window:

• If the cursor is in the Command window, it moves to the Code window.

• If the cursor is in the Code window, it moves to the Command window.

• If the Code window is not visible when the command is entered, it is made
visible.

When the cursor is in the Code window, several options become available that make
debugging much easier. These options are as follows:

• Set “point-and-shoot” breakpoints
Set these with the BPX command. If you do not specify parameters with the BPX
command (default key F9), an execution breakpoint is set at the location of the
cursor position in the Code window.

• Go to cursor line
Set a temporary breakpoint at the cursor line and begin executing with the HERE
command (default key F7).

• Scroll the Code window
The scrolling keys (UpArrow, DownArrow, PageUp and PageDn) are redefined
while the cursor is in the Code window:

◊ UpArrow: Scroll Code window up one line.

◊ DownArrow: Scroll Code window down one line.
◊ PageUp: Scroll Code window up one window.

◊ PageDn: Scroll Code window down one window.

Source Mode Only

In source mode, you can scroll the Code window from the Command window using
the CTRL key with one of cursor keys described above. In this mode, the following
keys also have special meaning:

• CTRL-Home: Moves to line 1 of current source file.

• CTRL-End: Moves to the last line of the current source file.

Note: The previous keys only work for source display, not for disassembled instructions.

• CTRL-RightArrow: Horizontal scroll of source code right.

• CTRL-LeftArrow: Horizontal scroll of source code left.
76 SoftICE Command Reference

SoftICE Commands
ERESOURCE Windows NT/2000/XP System Information

Display information about the synchronization resources contained in
ExpSystemResourceList.

Syntax ERESOURCE [-a | -c | -w | address]

 Use This command displays the ERESOURCE structure, a list of the threads that currently
own the ERESOURCE, and a list of the threads that are waiting on the ERESOURCE.

When you do not specify an address, SoftICE displays summary information about
every ERESOURCE structure in ExpSystemResourceList.

Example Enter the following command to display a list of the active resources on your system.

ERESOURCE -a

You can enter the following command to get extended information about a specific
ERESOURCE structure, including thread contentions and threads waiting on the
ERESOURCE.

ERESOURCE address

You can use the information you get from the commands above in combination with
the following command to help find deadlocks.

ERESOURCE -w

See Also KEVENT, KSEM, THREAD

-a Display resources that are actively held by any thread

-c Display resources that are or have been under contention (where contention
count > 0)

-w Display resources that have threads currently waiting on them

address Address of an ERESOURCE structure
SoftICE Command Reference 77

SoftICE Commands
EVENT Windows NT/2000/XP System Information

Displays BoundsChecker events.

Syntax EVENT [-? | -a | -lx | -nd | -o | -pd | -r | -s | -t | -x]
[start-event-index [L event-count]]

-? Displays descriptions of the supported command switches

-a Turns API return display on or off. The default setting is on. When this is off,
SoftICE does not display API return events.

-lx Specifies the stack-checking level (0x40 - 0x4000). The default setting is
0x800.

-nd Specifies the nesting depth used to display events. Legal values are 0 to 32
(decimal format). The default nesting level is 10. If events nest past the
specified nesting depth, SoftICE does not display them as indented.

-o Turns event logging on or off. The default setting is on.

-pd Specifies the SoftICE pop-up level for BoundsChecker events. The default
setting is 0.

0 - SoftICE does not pop up on BoundsChecker events.

1 - SoftICE pops up on errors only.

2 - SoftICE pops up on all errors and warnings.

-r Clears the event buffer.

-s Displays the current status of event viewing and logging. The number of
logged events is the total that have been trapped since the system was started.
It is displayed in decimal format.

-t Turns display of thread switches on or off. The default setting is on. When
this option is on and event n-1 is in a different thread than event n, SoftICE
displays event n in reverse video indicating a thread switch has occurred.
When this option is off, SoftICE does not display thread switches.

-x Displays all events with their parameters, as well as general summary
information for each event, including elapsed time, current thread and
current IRQL. If you do not specify this switch, SoftICE displays a single
summary line for each event.

start-event-index Displays events starting at the specified event index.

Levent-count Displays the logged events in the Command window, starting from the
specified start-event-index for a length of event-count events. If you do not
specify a length, SoftICE displays the events in a scrollable window starting
from start-event-index (if one is specified).
78 SoftICE Command Reference

SoftICE Commands
Use Use the EVENT command to display information about BoundsChecker events. You
can display event information in the Event window or in the Command window.

Viewing Events in the Event Window

You can specify whether SoftICE displays the events in the Event window with
summary or detail information. While the Event window is open, you can use F1 to
expand or collapse all events. You can place the cursor on a line and double-click or
press Enter to expand or collapse a single event.

The Event window supports the following keys.

Enter Toggles the display state of the event at the current cursor position between
summary information and detail information.

Esc Closes the Event window. When you re-open the Event window, SoftICE
preserves the previous window state (i.e. current event, expansion state, and
filters are the same).

PageUp Scrolls the screen up one page.

PageDown Scrolls the screen down one page.

Up Arrow Moves cursor up one line. If on the top line, it scrolls the window up one line.

Down Arrow Moves cursor down one line. If on bottom line, it scrolls window down one line.

Shift-Left Arrow Scrolls the window left one column.

Shift-Right Arrow Scrolls the window right one column.

Home Moves the cursor to the top row. If the cursor is already on the top row, starts
display at the first event.

End Moves the cursor to the bottom row. If the cursor is already on the bottom, starts
display at the last event.

* Undoes the last Home or End operation.

F1 Toggles the display state of all events between summary information and detail
information.

F2 Displays the Event filtering dialog.

F3 Displays the Parameter filtering dialog.

F4 Displays error events only.

F Closes the Event window and returns focus to the Command window. Use this
key if you want to use other SoftICE commands on data that is displayed in the
Event window. If you bring up the Event window again, SoftICE preserves the
previous window state (i.e. current top event, expansion state, and filters are the
same).

R Toggles the display state of API returns between showing all API returns and
showing no API returns.
SoftICE Command Reference 79

SoftICE Commands
Viewing Events in the Command Window

In the Command window, SoftICE can display any number of events starting from
any specific event index. SoftICE can display the events with summary or detail
information. The summary display includes only a single line for each event. The
detail display includes the summary information, as well as all event parameters. You
can use the EVENT command switches to customize the display output.

It is useful to view events in the Command window when you want to view a small
group of functions, or when you want to save the event data to a SoftICE History file.
A SoftICE History file contains current contents of the SoftICE history buffer. You can
use the scroll bars in the Command window to view the contents of the SoftICE
history buffer.

Example Enter the following command at the command prompt to display events in the Event
window.

EVENT

When you do not specify start-event-index or event-count, SoftICE displays the Event
window in place of the Command window. You can use this command with one of
the EVENT command switches or with a start-event-index to customize the display.

Enter the following command at the command prompt to display events in the
Command window starting at event start-event-index for a length of event-count events.

EVENT start-event-index Levent-count

See Also EVMEM, Chapter 12, “Using BoundsChecker Driver Edition,” in the Using SoftICE
manual.

T Toggles the highlighting of thread switches. Thread switches are indicated by
displaying the summary line of the first event in the new thread in reverse video.

E Toggles the highlighting of errors on API returns. SoftICE displays the summary
line of API return errors in bold.

S Displays the event at the current cursor position at the top of the Event window.

N Finds the next event that matches the search criteria selected with the right
mouse button.

P Finds the previous event that matches the search criteria selected with the right
mouse button.

0 - 7 Filters events by CPU number on SMP machines. Each key acts as a toggle for
displaying all events that occurred on a specific CPU. These keys also appear as
buttons on the top line of the Event window.
80 SoftICE Command Reference

SoftICE Commands
EVRES Windows 9x, Windows NT/2000/XP System Information

Displays resources collected by the BoundsChecker driver BCHKD.SYS.

Syntax EVRES [Process-Type | Object-Type | Driver-Type]

Note: If no parameters are entered, all resources will be displayed.

For each captured resource, the following information will be displayed:

• Handle − This is the object handle of the resource. For interrupt objects, it is the
address of the interrupt object structure.

• Process − This is the process name and process id where the resource was created.

• Obj Type − This is one of the object types listed above.

• Name − This is the resource name. For interrupt objects, this is the interrupt
vector number and the interrupt service routine address.

• EIP1 − This is the address in the driver that created the resource. If a symbolic
name is available, it will be displayed; otherwise, the address and the driver name
plus an offset will be displayed.

• EIP2 − This is the second level of return address on the stack. If a symbolic name
is available, it will be displayed; otherwise, the address and the driver name plus
an offset will be displayed.

Process-Type A Process-Type is a process name, a PID, or a PCB address. If one is specified, only
objects created in that process will be displayed. Use this version of the command to
display only objects created in the system process:

EVRES system

Object-Type An Object-Type is one of the following:

• KEY
• DIRECTORY
• INTERRUPT
• FILE
• SECTION
• EVENT

These refer to the types of objects collected by BCHKD. If one is specified, only the
objects of that type will be displayed. Use this version of the command to display
interrupt objects:

EVRES interrupt

Driver-Type A Driver-Type is a driver name. If one is specified, only resources created by that driver
will be displayed. Use this version of the command to display resources created by the
netbios driver:

EVRES netbios
SoftICE Command Reference 81

SoftICE Commands
Use Use the EVRES command to display resources collected by the BoundsChecker driver
BCHKD.SYS.

Example The following is a sample of the output of an EVRES command:

Evres interrupt

Handle Process(PID) Obj Type Name

8147A768 System(08) INTERRUPT Vec:51 ISR:ED0907A5

EIP1: ED092F20 serial!PAGESRP0+0720

EIP2: 00000000

8147AA28 System(08) INTERRUPT Vec:A2 ISR:ED0907A5

EIP1: ED092F20 serial!PAGESRP0+0720

EIP2: 00000000

8147B008 System(08) INTERRUPT Vec:52 ISR:ED086D10

EIP1: ED083526 i8042prt!PAGE+0406

EIP2: ED0844F1 i8042prt!PAGE+13D1

8155C628 System(08) INTERRUPT Vec:B3 ISR:ED0810CC

EIP1: ED08360D i8042prt!PAGE+04ED

EIP2: ED0844DA i8042prt!PAGE+13BA

8155C008 System(08) INTERRUPT Vec:93 ISR:ED3124BC

 EIP1: ED316D70 uhcd!PAGE+0B50

 EIP2: ED310FB3 uhcd!.text+0CD3

81579008 System(08) INTERRUPT Vec:83 ISR:BFEBC591

EIP1: BFEC360B NDIS!NdisInitializeInterrupt+0179

EIP2: BFEC348B NDIS!NdisMRegisterInterrupt+0035

818AB008 System(08) INTERRUPT Vec:92 ISR:BFF27E28

EIP1: BFF300C4 atapi!PAGE+0AA4

EIP2: BFF2FF37 atapi!PAGE+0917

818AB408 System(08) INTERRUPT Vec:92 ISR:BFF27E28

EIP1: BFF300C4 atapi!PAGE+0AA4

EIP2: BFF2FF37 atapi!PAGE+0917

818ABC68 System(08) INTERRUPT Vec:72 ISR:BFF27E28

EIP1: BFF300C4 atapi!PAGE+0AA4

EIP2: BFF2FF37 atapi!PAGE+0917
82 SoftICE Command Reference

SoftICE Commands
See Also EVENT

EVMEM

818AB008 System(08) INTERRUPT Vec:71 ISR:BFF27E28

EIP1: BFF300C4 atapi!PAGE+0AA4

EIP2: BFF2FF37 atapi!PAGE+0917

814D5008 System(08) INTERRUPT Vec:B1 ISR:BFF7F44Av

 EIP1: BFF8FF8E ACPI!PAGE+08CE

 EIP2: BFF97403 ACPI!PAGE+7D43

Total Resource Objects: 10
SoftICE Command Reference 83

SoftICE Commands
EVMEM Windows NT/2000/XP System Information

Display information about BoundsChecker memory events.

Syntax EVMEM [-? | -d | -t | -s | -p | -o | -e] [tag | driver-name |
 pool-type]

Use Use the EVMEM command to display information about BoundsChecker memory
events in the Command window.

To display information about all types of events, use the EVENT command.

-? Displays descriptions of the supported command switches.

-d Sorts the output by driver name.

-t Sorts the output by tag.

-s Sorts the output by size.

-p Sorts the output by pool type.

-o Displays overview information.

-e Displays only error events.

tag Displays only memory events that were allocated with that specific tag.
Tags are 4 byte ASCII strings that are passed to the
ExAllocatePoolWithTag API.

driver-name Displays memory events for only the specified driver.

pool-type Displays only memory events allocated out of that specific pool. The
following values are valid.

• NPP Non-paged pool

• PP Pageable pool

• NPPMS Non-paged pool, must succeed

• NPPCA Non-paged pool cache aligned

• PPCA Pageable pool cache aligned

• NPPCAMS Non-paged pool cache aligned, must succeed

• MMC Allocated by MMAllocateContiguousMemory API

• MMNC Allocated by MMAllocateNonCachedMemory API
84 SoftICE Command Reference

SoftICE Commands
Example Enter the following command at the command prompt to display memory events in
the Command window.

EVMEM

You can use the EVMEM command switches to customize the display, including
sorting the output and displaying additional information.

Enter the following command at the command prompt to display events in the
Command window for driver-name

EVMEM driver-name

See Also EVENT
SoftICE Command Reference 85

SoftICE Commands
EXIT Windows 3.1 Flow Control

Force an exit of the current MS-DOS or Windows 3.1 program.

Syntax EXIT

Use The EXIT command attempts to abort the current DOS or Windows program by
forcing a DOS exit function (INT 21h, function 4Ch). This command only works if
DOS is in a state where it is able to accept the exit function call. If this call is made
from certain interrupt routines, or other times when DOS is not ready, the system may
behave unpredictably. Only use this call when SoftICE pops up in VM mode, or 16- or
32-bit protected mode, running at ring 3. In 32-bit, ring 0 protected mode code, an
error displays.

Caution Use the EXIT command with care. Because SoftICE can be popped up at any time, a
situation can occur in which DOS is not in a state to accept an exit function call. Also,
the EXIT command does not reset any program-specific settings.

Example: The EXIT command does not reset the video mode or interrupt vectors. For
Windows programs, the EXIT command does not free resources.

If running under WIN32s, the EXIT command sometimes causes WIN32s to display a
dialog box with the message “Unhandled exception occurred.” Press OK to terminate
the application.

For Windows 9x and Windows NT/2000/XP

EXIT is no longer supported.

Example The following command causes the current DOS or Windows 3.1 program to exit.

EXIT
86 SoftICE Command Reference

SoftICE Commands
EXP Windows 3.1, Windows 9x, Windows NT/2000/XP Symbol/Source

Display export symbols from DLLs.

Syntax EXP [[module!][partial-name]] | [!]

module! Display exports from the specified module only.

partial-name Export symbol or the first few characters of the name of an export
symbol. The ? character can be used as a wildcard character in place of
any character in the export name.

! Display list of modules for which SoftICE has exports loaded.

Use Use the EXP command to show exports from Windows DLLs, Windows NT/2000/XP
drivers, and 16-bit drivers (.DRV extension) for which SoftICE has exports loaded. To
tell SoftICE which DLLs and drivers to load, set the SoftICE initialization settings for
Exports in Symbol Loader.

The module and name parameters can be used to selectively display exports only from
the specified module, and/or exports that match the characters and wildcards in the
name parameter. When exports are displayed, the module name is printed first on a
line by itself, and the export names and their addresses are printed below it.

Note: Since DLLs and drivers run in protected mode, the addresses are protected mode
addresses.

This command is valid for both 16-bit and 32-bit DLLs with 16-bit exports being listed
first.

For Windows 3.1

SoftICE automatically loads exports for KERNEL, USER, and GDI.

For Windows 9x

SoftICE automatically loads exports for KERNEL, USER, and GDI. The SoftICE Loader
can dynamically load 32-bit exported symbols.

For Windows NT/2000/XP

SoftICE automatically loads exports for KERNEL32, USER32, and GDI32. The SoftICE
loader can dynamically load 32-bit exported symbols.
SoftICE Command Reference 87

SoftICE Commands
Example The following example of the EXP command displays all exports that begin with the
string DELETE. The output shows that KERNEL.DLL has 3 exports matching the string:
DELETEATOM, DELETEFILE, and DELETEPATHNAME. These routines are located at
127:E3, 11F:7D4 and 127:345A, respectively. Following the exports from KERNEL are
the exports from USER and GDI, and following these begin the 32-bit exports.

EXP delete

KERNEL
0127:00E3 DELETEATOM 011F:07D4 DELETEFILE
0127:345A DELETEPATHNAME

USER
176F:0C88 DELETEMENU

GDI
0527:0000 DELETEMETAFILE 04B7:211C DELETESPOOLPAGE
047F:55FD DELETEDC 054F:0192 DELETEPQ
047F:564B DELETEOBJECT 04B7:226E DELETEJOB
0587:A22E DELETEENHMETAFILE

KERNEL32
0137:BFF97E9B DeleteAtom 0137:BFF88636 DeleteCriticalSection
0137:BFF9DC5A DeleteFileA 0137:BFFA4C49 DeleteFileW

USER32
0137:BFF62228 DeleteMenu
GDI32
0137:BFF3248F DeleteColorSpace 0137:BFF32497 DeleteDC
0137:BFF3248B DeleteEnhMetaFile 0137:BFF31111 DeleteMetaFile
0137:BFF3249F DeleteObject

The ! character is used to narrow EXP’s output to only those modules which are listed
on the command line to the left of the !. In the following example, no DLL or driver is
specified before the !, so SoftICE simply dumps the names of all the modules for which
it has exports loaded.

EXP !

KERNEL
USER
GDI
KERNEL32
USER32
GDI32
88 SoftICE Command Reference

SoftICE Commands
In the following example, the EXP command lists all exports within USER32.DLL that
start with “IS.” The ! character is used here to differentiate the module name from the
name qualifier.

:EXP user32!is

USER32
0137:BFF64290 IsCharAlphaA
0137:BFF64256 IsCharAlphaNumericA
0137:BFF61014 IsCharAlphaNumericW
0137:BFF61014 IsCharAlphaW
0137:BFF641E8 IsCharLowerA
0137:BFF61014 IsCharLowerW
0137:BFF64222 IsCharUpperA
0137:BFF61014 IsCharUpperW
0137:BFF61F6A IsChild
0137:BFF6480F IsClipboardFormatAvailable
0137:BFF64D7C IsDialogMessage
0137:BFF64D7C IsDialogMessageA
0137:BFF6101D IsDialogMessageW
0137:BFF618A4 IsDlgButtonChecked
0137:BFF62F12 IsHungThread
0137:BFF64697 IsIconic
0137:BFF623A5 IsMenu
0137:BFF649B9 IsRectEmpty
0137:BFF644BF IsWindow
0137:BFF646E1 IsWindowEnabled
0137:BFF638C4 IsWindowUnicode
0137:BFF64706 IsWindowVisible
0137:BFF646BC IsZoomed

See Also SYMBOL, TABLE
SoftICE Command Reference 89

SoftICE Commands
F Windows 3.1, Windows 9x, Windows NT/2000/XP Miscellaneous

Fill memory with data.

Syntax F address l length data-list

address Starting address at which to begin filling memory.

l length Length in bytes.

data-list List of bytes or quoted strings separated by commas or spaces. A
quoted string can be enclosed with single quotes or double quotes.

Use Memory is filled with the series of bytes or characters specified in the data-list.
Memory is filled starting at the specified address and continues for the length
specified by the L parameter. If the data-list length is less than the specified length, the
data-list is repeated as many times as necessary.

Example The following example fills memory starting at location DS:8000h for a length of
100h bytes with the string ’Test’. The string ’Test’ is repeated until the fill length is
exhausted.

F ds:8000 l 100 ’test’
90 SoftICE Command Reference

SoftICE Commands
FAULTS Windows 3.1, Windows 9x, Windows NT/2000/XP Mode Control

Turn fault trapping on or off.

Syntax FAULTS [on | off]

Use Use the FAULTS command to turn SoftICE processor fault trapping on or off.

Example The following example turns off fault trapping in SoftICE.

FAULTS off

See Also SET
SoftICE Command Reference 91

SoftICE Commands
FIBER Windows NT/2000/XP System Information

Dump a fiber data structure.

Syntax FIBER [address]

address

Use Use the FIBER command to dump a fiber data structure as returned by CreateFiber(). If
you do not specify an address, FIBER dumps the fiber data associated with the current
thread. SoftICE provides a stack trace after the dump.

Example The following example dumps the fiber data associated with the current thread.

FIBER

Fiber state for the current thread:
 User data:004565D0 SEH Ptr:01C2FFA8
 Stack top:01C30000 Stack bottom:01C2F000 Stack limit:01B30000
 EBX=00000001 ESI=005862B8 EDI=004565D0 EBP=01C2FF88
ESP=01C2FC4C
 EIP=63011BAF a.k.a. WININET!.text+00010BAF

=> at 001B:00579720
92 SoftICE Command Reference

SoftICE Commands
FILE Windows 3.1, Windows 9x, Windows NT/2000/XP Symbol/Source

Change or display the current source file.

Syntax FILE [[*]file-name]

*

file-name

Use The FILE command is often useful when setting a breakpoint on a line that has no
associated symbol. Use FILE to bring the desired file into the Code window, use the SS
command to locate the specific line, move the cursor to the specific line, then enter
BPX or press F9 to set the breakpoint.

• If you specify file-name, that file becomes the current file and the start of the file
displays in the Code window.

• If you do not specify file-name, the name of the current source file, if any,
displays.

• If you specify the * (asterisk), all files in the current symbol table display.

Only source files that are loaded into memory with Symbol Loader or are pre-loaded at
initialization are available with the FILE command.

For Windows 9x and Windows NT/2000/XP

When you specify a file name in the FILE command, SoftICE switches address
contexts if the current symbol table has an associated address context.

Example Assuming main.c is loaded with the SoftICE Loader, the following command displays
the file in the Code window starting with line 1.

FILE main.c
SoftICE Command Reference 93

SoftICE Commands
FKEY Windows 3.1, Windows 9x, Windows NT/2000/XP Customization

Show and edit the function key assignments.

Syntax FKEY [function-key string]

function-key

string Consists of any valid SoftICE commands and the special characters
caret (^) and semicolon (;). Place a caret (^) at the beginning of a
command to make the command invisible. Place a semicolon (;) in the
string in place of Enter.

Use Use the FKEY command to assign a string of one or more SoftICE commands to a
function-key. If you use the command without any parameters, the current function-
key assignments display.

Hint: You can also edit function key assignments by modifying the SoftICE initialization
settings for Keyboard Mappings in Symbol Loader. Refer to the Using SoftICE manual
for more information about customizing SoftICE.

To unassign a specified function-key, use the FKEY command with the parameters
function_key_name followed by null_string.

Use carriage return symbols in a function-key assignment string to assign a series of
commands to a function-key. The carriage return symbol is represented by a semi-
colon (;).

If you put a caret “^” or press Shift-6 in front of a command name, the command
becomes invisible. You can use the command like any other, but all information that
normally displays in the Command window (excluding error messages) is suppressed.
The invisible mode is useful when a command changes information in a window
(Code, Register, or Data), but you do not want to clutter the Command window.

You can also use the plus sign (+) to assign an incomplete command to a function-key.
When the function key is pressed, SoftICE displays the partial command in the
command line so that the user can complete it.

Key Description

F1 - F12 Unshifted function key

SF1 - SF12 Shifted function key

CF1 - CF12 Control key plus function key

AF1 - AF12 Alternate key plus function key
94 SoftICE Command Reference

SoftICE Commands
SoftICE implements the function-keys by inserting the entire string into its keyboard
buffer. The function-keys can therefore be used anyplace where a valid command can
be typed. If you want a function key assignment to be in effect every time you use
SoftICE, initialize the keyboard mappings within your SOFTICE configuration settings.
Refer to Chapter 10, “Customizing SoftICE” in the Using SoftICE guide.

Example The following example assigns the command to toggle the Register window command
(WR) to the F2 function-key. The caret “^” makes the function invisible, and the
semicolon “;” ends the function with a carriage return. After you enter this command,
you can press the F2 key to toggle the Register window on or off.

FKEY f2 ^wr;

The following example shows that multiple commands can be assigned to a single
function and that partial commands can be assigned for the user to complete. After
you enter this command, pressing the Ctrl F1 key sequence causes the program to
execute until location CS:8028F000h is reached, displays the stack contents, and starts
the U command for the user to complete.

FKEY cf1 g cs:8028f000;d ss:esp;u cs:eip+

After you enter the following example, pressing the F1 key makes the Data window
three lines long and dumps data starting at 100h in the segment currently displayed
in the Data window.

FKEY f1 wd 3;d 100;

The following example assigns commands to the F1 key to toggle the Register window,
create a Locals window of length 8, and a Code window of length 10.

FKEY f1 wr;wl 8;wc 10;
SoftICE Command Reference 95

SoftICE Commands
FLASH Windows 3.1, Windows 9x, Windows NT/2000/XP Window Control

Restore the Windows screen during P and T commands.

Syntax FLASH [on | off]

Use Use the FLASH command to specify whether the Windows screen restores during any
T (trace) and P (step over) commands. If you specify that the Windows screen is to be
restored, it is restored for the brief time period that the P or T command is executing.
This feature is needed to debug sections of code that access video memory directly.

In most cases, if the routine being called writes to the Windows screen, and the P
command executes across such a call, the screen restores. However, when you are
debugging protected mode applications, such as VxDs or Windows applications, with
FLASH off, SoftICE restores the screen only if the display driver is called before the call
is completed.

If you do not specify a parameter, the current state of FLASH displays.

The default is FLASH OFF.

Example The following command turns on FLASH mode. The Windows screen restores during
any subsequent P or T commands.

FLASH on

See Also SET
96 SoftICE Command Reference

SoftICE Commands
FMUTEX Windows NT/2000/XP System Information

Display information about a mutant kernel object.

Syntax FMUTEX [expression]

expression An expression that resolves to a valid address is acceptable.

Use The FMUTEX command displays information about the mutant object identified by
the expression you specify.

You must enter an expression to get data, since this is not itself a Windows NT/2000/
XP object. The expression parameter is something that would not generally be
considered a name. That is, it is a number, a complex expression (an expression which
contains operators, such as Explorer + 0), or a register name.

Example The following example displays information about the FMUTEX object

fmutex ecx

Address Count Own KTEB(TID) Contention OLDIql State
8014EA10 1 1(0P) 0 0 Clear

See Also KMUTEX
SoftICE Command Reference 97

SoftICE Commands
FOBJ Windows 98, Windows Me, Windows NT/2000/XP System Information

Display information about a file object.

Syntax FOBJ [fobj-address]

fobj-address Address of the start of the file object structure to be displayed.

Use The FOBJ command displays the contents of kernel file objects. The command checks
for the validity of the specified file object by insuring that the device object referenced
by it is a legitimate device object.

The fields shown by SoftICE are not documented in their entirety here, as adequate
information about them can be found in NTDDK.H in the Windows NT/2000/XP
DDK. A few fields deserve special mention, however, because device driver writers find
them particularly useful:

DeviceObject This field is a pointer to the device object associated with the file
object.

Vpb This is a pointer to the volume parameter block associated with the
file object (if any).

FSContext1 and
FSContext2 These are file system driver (FSD) private fields that can serve as keys

to aid the driver in determining what internal FSD data is associated
with the object.

Other fields of interest, whose purpose should be fairly obvious, include the access
protection booleans, the Flags, the FileName and the CurrentByteOffset.

Example The following example shows output from the FOBJ command.

:FOBJ fd877230

DeviceObject * : FD881570
Vpb * : 00000000
FsContext * : FD877188
FsContext2 * : FD877C48
SecObjPointer * : FD8771B4
PrivateCacheMap * : 00000001
FinalStatus : 00000000
RelatedFileObj * : 00000000
LockOperation : False
DeletePending : False
ReadAccess : True
98 SoftICE Command Reference

SoftICE Commands
WriteAccess : True
DeleteAccess : False
SharedRead : True
SharedWrite : True
SharedDelete : False
Flags : 00040002 FO_SYNCHRONOUS_IO | FO_HANDLE_CREATED
FileName : \G:\SS\data\status.dat
CurrentByteOffset : 00
Waiters : 00000000
Busy : 00000000
LastLock* : 00000000
&Lock : FD877294
&Event : FD8772A4
ComplContext* : 00000000
SoftICE Command Reference 99

SoftICE Commands

FORMAT Windows 3.1, Windows 9x, Windows NT/2000/XP Window Control

Shift-F3

Change the format of the Data window.

Syntax FORMAT

Use Use the FORMAT command to change the display format in the currently displayed
Data window. FORMAT cycles through the display formats in the following order:
byte, word, dword, short real, long real, 10-byte real, and then byte again. Each call to
FORMAT changes the window to the next display format in this order. This command
is most useful when assigned to a function key. The default function key assignment is
Shift-F3. Shift-F3 is also supported while editing in the Data window.

Example The following example changes the Data window to the next display format in the
sequence byte, word, dword, short real, long real, and 10-byte real.

FORMAT
100 SoftICE Command Reference

SoftICE Commands
G Windows 3.1, Windows 9x, Windows NT/2000/XP Flow Control

Go to an address.

Syntax G [=start-address] [break-address]

=start-address Any expression that resolves to a valid address is acceptable.

break-address Any expression that resolves to a valid address is acceptable.

Use The G command exits from SoftICE. If you specify break-address, a single one-time
execution breakpoint is set on that address. In addition, all sticky breakpoints are
armed.

Execution begins at the current CS:EIP unless you supply the start-address parameter.
If you supply the start-address parameter, execution begins at start-address. Execution
continues until the break-address is encountered, the SoftICE pop-up key sequence is
used, or a sticky breakpoint is triggered. When SoftICE pops up, for any reason, the
one-time execution breakpoint is cleared.

The break-address must be the first byte of an instruction opcode.

The G command without parameters behaves the same as the X command.

If the Register window is visible when SoftICE pops up, all registers that have been
altered since the G command was issued are displayed with the bold video attribute.

For Windows 3.1

The non-sticky execution breakpoint uses an INT 3 instruction breakpoint.

For Windows 9x and Windows NT/2000/XP

The non-sticky execution breakpoint uses debug registers unless none are available. If
none are available, it uses an INT 3 instruction.

Example The following command sets a one-time breakpoint at address CS:80123456h.

G 80123456
SoftICE Command Reference 101

SoftICE Commands
GDT Windows 3.1, Windows 9x, Windows NT/2000/XP System Information

Display the Global Descriptor Table.

Syntax GDT [selector]

selector Starting GDT selector to display

Use The GDT command displays the contents of the Global Descriptor Table. If you
specify an optional selector, only information on that selector is listed. If the specified
selector is a local descriptor table (LDT) selector (that is, bit 2 is a 1), SoftICE
automatically displays information from the LDT, rather than the GDT.

Output The base linear address and the limit of the GDT is shown at the top of the GDT
command’s output. Each subsequent line of the output contains the following
information:

selector value The lower two bits of this value reflects the descriptor privilege level.

selector type One of the following:

Type Description

Code16 16-bit code selector

Data16 16-bit data selector

Code32 32-bit code selector

Data32 32-bit data selector

LDT Local Descriptor Table selector

TSS32 32-bit Task State Segment selector

TSS16 16-bit Task State Segment selector

CallG32 32-bit Call Gate selector

CallG16 16-bit Call Gate selector

TaskG32 32-bit Task Gate selector

TaskG16 16-bit Task Gate selector

TrapG32 32-bit Trap Gate selector
102 SoftICE Command Reference

SoftICE Commands
selector base Linear base address of the selector.

selector limit Size of the selector’s segment.

selector DPL The selector's descriptor privilege level (DPL), which is either 0, 1, 2
or 3.

present bit P or NP, indicating whether the selector is present or not present.

segment attributes One of the following:

Example The following command shows abbreviated output from the GDT command.

GDT

Sel. Type Base Limit DPL Attributes
GDTbase=C1398000 Limit=0FFF
0008 Code16 00017370 0000FFFF 0 P RE
0010 Data16 00017370 0000FFFF 0 P RW
0018 TSS32 C000AEBC 00002069 0 P B
0020 Data16 C1398000 00000FFF 0 P RW
0028 Code32 00000000 FFFFFFFF 0 P RE
0030 Data32 00000000 FFFFFFFF 0 P RW
003B Code16 C33E9800 000007FF 3 P RE
0043 Data16 00000400 000002FF 3 P RW
0048 Code16 00013B10 0000FFFF 0 P RE
0050 Data16 00013B10 0000FFFF 0 P RW
0058 Reserved 00000000 0000FFFF 0 NP
0060 Reserved 00000000 0000FFFF 0 NP

TrapG16 16-bit Trap Gate selector

IntG32 32-bit Interrupt Gate selector

IntG16 16-bit Interrupt Gate selector

Reserved Reserved selector

Value Description

RW Data selector is readable and writable.

RO Data selector is read only.

RE Code selector is readable and executable.

EO Code selector is execute only.

B TSS’s busy bit is set.

ED Expand down data selector.

Type Description
SoftICE Command Reference 103

SoftICE Commands
GENINT Windows 3.1, Windows 9x, Windows NT/2000/XP Flow Control

Force an interrupt to occur.

Syntax GENINT [nmi | int1 | int3 | interrupt-number]

nmi Forces a non-maskable interrupt.

int1 Forces an INT1 interrupt.

int3 Forces an INT3 interrupt.

interrupt-number For Windows 3.1 and Windows 9x: Valid interrupt number between
0 and 5Fh.
For Windows NT/2000/XP: Valid interrupt number between 0 and
FFh.

Use The GENINT command forces an interrupt to occur. Use this function to hand off
control to another debugger you are using with SoftICE, and to test interrupt routines.

The GENINT command simulates the processing sequence of a hardware interrupt or
an INT instruction. It vectors control through the current IDT entry for the specified
interrupt number.

Caution: You must ensure that there is a valid interrupt handler before using this command.
SoftICE does not know if there is a handler installed. Your machine is likely to
crash if you issue this command without a handler.

GENINT cannot be used to simulate a processor fault that pushes an exception code.
For example, GENINT cannot simulate a general protection fault.

Example The following command forces a non-maskable interrupt. It gives control back to
CodeView for DOS, if you use SoftICE as an assistant to CodeView for DOS.

GENINT nmi

If using CodeView for Windows, use the command:

GENINT 0

To pass control to other debuggers, experiment with interrupt-numbers 0, 1, 2 and 3.
104 SoftICE Command Reference

SoftICE Commands
When the command I3HERE==ON, and you are using a level -3 debugger, such as
BoundsChecker, SoftICE traps on any INT 3 breakpoints installed by the level-3
debugger. The following example shows how to avoid this situation. Set
I3HERE==OFF, and use the GENINT command to reactivate the breakpoint. This
returns control to the level -3 debugger, and SoftICE does not trap subsequent INT 3s.

I3HERE off
GENINT 3
SoftICE Command Reference 105

SoftICE Commands

H Windows 3.1, Windows 9x, Windows NT/2000/XP Miscellaneous

F1

Display help information.

Syntax For Windows 3.1

H [command | expression]

For Windows 9x and Windows NT/2000/XP

H [command]

Use For Windows 3.1

Under Windows 3.1, the parameter you supply determines whether help is displayed
or an expression is evaluated. If you specify a command, help displays detailed
information about the command, including the command syntax and an example. If
you specify an expression, the expression is evaluated, and the result is displayed in
hexadecimal, decimal, signed decimal (only if < 0), and ASCII.

For Windows 9x and Windows NT/2000/XP

Under Windows 9x and Windows NT/2000/XP, the H command displays help on
SoftICE commands. (Refer to ? on page 3 for information about evaluating expressions
under Windows 9x and Windows NT/2000/XP.) To display general help on all the
SoftICE commands, enter the H command with no parameters. To see detailed
information about a specific command, use the H command followed by the name of
the command on which you want help. Help displays a description of the command,
the command syntax, and an example.

Example The following example displays information about the ALTKEY command:

:H altkey

Set key sequence to invoke window
ALTKEY [ALT letter | CTRL letter]
ex: ALTKEY ALT D

See Also ?
106 SoftICE Command Reference

SoftICE Commands
HBOOT Windows 3.1, Windows 9x, Windows NT/2000/XP Flow Control

Do a hard system boot (total reset).

Syntax HBOOT

Use The HBOOT command resets the computer system. SoftICE is not retained in the reset
process. HBOOT is sufficient unless an adapter card requires a power-on reset. In those
rare cases, the machine power must be recycled.

HBOOT performs the same level of system reset as pressing Ctrl-Alt-Delete when not
in SoftICE.

Example The following command forces the system to reboot.

HBOOT
SoftICE Command Reference 107

SoftICE Commands
HEAP Windows 3.1, Windows 9x, Windows NT/2000/XP System Information

Display the Windows global heap.

Syntax HEAP -L [free | module-name | selector]

-L Display only global heap entries that contain a local heap.

free Display only heap entries marked as FREE.

module-name Name of the module.

selector LDT selector.

Use For Windows 9x

For 16-bit modules, the HEAP command works the same as it does under Windows
3.1.

For Windows NT/2000/XP

For 16-bit modules, the HEAP command works the same as it does under Windows
3.1, but is process-specific. You must be in a NTVDM process that contains a WOW
(Windows on Windows) box.

For Windows 9x,
refer to HEAP32 on
page 111.

For Windows NT/
2000/XP, refer to
HEAP32 on page
114.

For Windows 3.1

The HEAP command displays the Windows global heap in the Command window.

• If you do not specify parameters, the entire global heap displays.

• If you specify FREE, only heap entries marked as FREE display.

• If you specify the module name, only heap entries belonging to the module
display.

• If you specify an LDT selector, only a single heap entry corresponding to the
selector displays.

At the end of the listing, the total amount of memory used by the heap entries that
displayed is shown. If the current CS:EIP belongs to one of the heap entries, that entry
displays with the bold video attribute.

If there is no current LDT, the HEAP command is unable to display heap information.
108 SoftICE Command Reference

SoftICE Commands
Output For each heap entry the following information displays:

selector or handle In Windows 3.1, this is almost the same thing. Heap selectors all have
a dpl of 3 while the corresponding handle is the same selector with a
dpl of 2. For example, if the handle was 106h, the selector would be
107h. Use either of these in an expression.

address 32-bit flat virtual address.

size Size of the heap entry in bytes.

module name Module name of the owner of the heap entry.

type Type of entry. One of the following:

Additional Type Information

If the heap entry is a code or a data segment, the segment number
from the .EXE file displays. If the heap entry is a resource, one of the
following resource types may display:

Type Description

Code Non-discardable code segment

Code D Discardable code segment

Data Data segment

ModuleDB Module data base segment

TaskDB Task data base segment

BurgerM Burger Master (The heap itself)

Alloc Allocated memory

Resource Windows Resource

UserDef Icon String Accel IconGrp

Cursor Menu FontGrp ErrTable NameTabl

Bitmap Dialog Font CursGrp
SoftICE Command Reference 109

SoftICE Commands
Example The following example displays all heap entries belonging to the KERNEL module.

HEAP kernel

See Also For Windows 9x, refer to HEAP32 on page 111.
For Windows NT/2000/XP, refer to HEAP32 on page 114.

Han/Sel Address Length Owner Type Seg/Rsr

00F5 000311C0 000004C0 KERNEL ModuleDB

00FD 00031680 00007600 KERNEL Code 01

0575 00054220 00003640 KERNEL Alloc

0106 00083E40 00002660 KERNEL Code D 02

010E 805089A0 00001300 KERNEL Code D 03

0096 80520440 00000C20 KERNEL Alloc

Total Memory:62K
110 SoftICE Command Reference

SoftICE Commands
HEAP32 Windows 9x System Information

Display the Windows global heap.

Syntax HEAP32 [hheap32 | task-name]]

hheap32 Heap handle returned from HeapCreate().

task-name Name of any 32-bit task.

Use For Windows 9x

The HEAP32 command displays heaps for a process.

Note: For 16-bit modules, use the HEAP32 on page 114.

The HEAP32 command displays the following:

• KERNEL32 default system heap.

• Private heaps of processes created through the HeapCreate() function.

• Two Ring-0 heaps created by VMM. The first one displayed is the pagelocked
heap, and the second is the pagetable heap.

• One Ring-0 heap for every existing virtual machine.

For Windows 3.1,
Windows 9x, and
Windows NT/2000/
XP, refer to HEAP
on page 108.

For Windows NT/
2000/XP, refer to
HEAP32 on page
114.

If you provide a process name, SoftICE displays the entire default process heap for that
process, and the address context automatically changes to that of the process. To view
a nondefault heap for a process, specify the heap base address instead of the process
name.

The debug versions of Windows 9x provide extra debugging information for each
heap element within a heap. To see this information, you must be running the
appropriate debug version, as follows:

• For KERNEL32 Ring-3 heaps, have the SDK debug version installed.

• For VMM Ring-0 heaps, have the DDK debug version of VMM installed.

Output For each heap entry, the following information displays:

HeapBase Address at which the heap begins.

MaxSize Current maximum size to which the heap can grow without creating a
new segment.

Committed Number of kilobytes of committed memory that are currently present
in physical memory.

Segments Number of segments in the heap. Each time the heap grows past the
SoftICE Command Reference 111

SoftICE Commands
current maximum size, a new heap segment is created.

Type

Owner Name of the process that owns the heap.

When displaying an individual 32-bit heap, the following information displays:

When the appropriate debug versions of the SDK and DDK are installed, the following
extra information appears for each heap element:

Heap Type Description

Private Ring 3 heap created by an application process.

System Ring 3 default heap for KERNEL32.

Ring0 Ring 0 heap created by VMM.

VM## Heap created by VMM for a specific Virtual
Machine to hold data structures specific to that VM.

Heap Type Description

Address Address of the heap element

Size Size in bytes of the heap element

Free If the heap element is a free block, the word FREE
appears; otherwise, the field is blank.

Heap Element Description

EIP EIP address of the code that allocated the heap
element.

TID VMM thread-id of the allocating thread

Owner Nearest symbol to the EIP address
112 SoftICE Command Reference

SoftICE Commands
Example The following example displays all 32-bit heaps.

HEAP32

The following example displays all heap entries for Exchng32.

HEAP32 exchng32

See Also For Windows 3.1, Windows 9x, and Windows NT/2000/XP, refer to HEAP on page
108. For Windows NT/2000/XP, refer to HEAP32 on page 114.

HeapBase Max
Size

Commit-
ted

Seg-
ments

Type Owner

00EA0000 1024K 8K 1 Private Mapisp32

00DA0000 1024K 8K 1 Private Mapisp32

00CA0000 1024K 8K 1 Private Mapisp32

00960000 1024K 8K 1 Private Mapisp32

00860000 1024K 8K 1 Private Mapisp32

Heap: 00400000 Max Size: 1028K Committed: 12K Segments: 1

Address Size

00400078 000004E4

00400560 00000098

004005FC 00000054

00400654 000000A4

004006FC 00000010

00400710 00000014 Free
SoftICE Command Reference 113

SoftICE Commands
HEAP32 Windows NT/2000/XP System Information

Display the Windows heap.

Syntax HEAP32 [[-w -x -s -v -b -trace] [heap | heap-entry | process-type]]

-w Walk the heap, showing information about each heap entry.

-x Show an extended summary of a 32-bit heap.

-s Provide a segment summary for a heap.

-v Validate a heap or heap-entry.

-b Show base address and sizes of heap entry headers.

-trace Display a heap trace buffer.

heap 32-bit heap handle.

heap-entry Heap allocated block returned by HeapAlloc or HeapRealloc.

process-type Process name, process-id, or process handle (KPEB).

Use All HEAP32 options and parameters are optional. If you do not specify options or
parameters, a basic heap summary displays for every heap in every process. If a
parameter is specified without options, a summary will be performed for the heap-
entry, heap, or in the case of a process-type, a summary for each heap within the
process.

Note: All 16-bit HEAP functionality still works. Refer to HEAP on page 108 for Windows
3.1. This information only applies to HEAP32.

For Windows 3.1,
Windows 9x, and
Windows NT/2000/
XP, refer to HEAP
on page 108.

For Windows 9x,
refer to HEAP32 on
page 111.

The Walk Option

The walk option (-w) walks a heap, showing the state of each heap-entry on a heap.
Walk is the default option if you specify a heap handle without other options.

The Extended Option

The extended option (-x) displays a detailed description of all useful information
about a heap, including a segment summary and a list of any Virtually Allocated
Blocks (VABs) or extra UnCommitted Range (UCR) tables that may have been created
for the heap.
114 SoftICE Command Reference

SoftICE Commands
The Segment Option

The segment option (-s) displays a simple summary for the heap and for each of its
heap-segments. Segments are created to map the linear address space for a region of a
heap. A heap can be composed of up to sixteen segments.

The Validate Option

The validate option (-v) completely validates a single heap-entry, or a heap and all of
its components, including segments, heap-entries, and VABs. In most cases, the heap
validation is equivalent to or stricter than the Win32 API Heap functions. The validate
option is the only option that takes a heap-entry parameter as input. All other options
work with heap handles or process-types. If the heap is valid, an appropriate message
displays. If the validation fails, one of the following error messages appears.

• For a block whose header is corrupt, SoftICE displays the following message:

Generic Error: 00140BD0 is not a heap entry, or it is corrupt

Specific Error: 00140BD0: Backward link for Block is invalid

• For a block whose guard-bytes have been overwritten, SoftICE displays the
following message:

Allocated block: 00140BD0: Block BUSY TAIL is corrupt

Note: If you run your application under a debugger, for example, BoundsChecker or
Visual C++, each allocated block has guard-bytes, and each free block is marked
with a pattern so that random overwrites can be detected.

• For a free block that has been written to, subsequent to being freed, SoftICE
displays the following message:

Free block: 00140E50: Free block failed FREE CHECK at 141E70

The Base Option

Use the base option (-b) to change the mode in which addresses and heap entry sizes
display. Under normal operation, all output shows the address of the heap-entry data,
and the size of the user data for that block. When you specify the base option, all
output shows the address of the heap-entry header, which precedes each heap-entry,
and the size of the full heap-entry. The size of the full heap-entry includes the heap-
entry header, and any extra data allocated for guard-bytes or to satisfy alignment
requirements. Under most circumstances you only specify base addressing when you
need to walk a heap or its entries manually.

When you use the base option, the base address for each heap-entry is 8 bytes less
than when base is not specified, because the heap-entry header precedes the actual
heap-entry by 8 bytes. Secondly, the size for the allocated blocks is larger because it
includes an additional 8 bytes for the heap-entry header, guard-bytes, and any extra
bytes needed for proper alignment. The output from the base option is useful for
SoftICE Command Reference 115

SoftICE Commands
manually navigating between adjacent heap entries, and for checking for memory
overruns between the end of the heap-entry data and any unused space prior to the
guard-bytes. The guard-bytes are always allocated as the last two DWORDs of the heap
entry.

Note: The base option has no effect on input parameters. Heap-entry addresses are always
assumed to be the address of the heap-entry data.

The Trace Option

Use the trace option (-trace) to display the contexts of a heap trace buffer which record
actions that occur within a heap. Heap trace buffers are optional and are generally not
created. To enable tracing in the Win32 API, specify the
HEAP_CREATE_ENABLE_TRACING flag as one of the flags to ntdll!RtlCreateHeap. You
cannot use this option with Kernel32!HeapCreate() because it strips out all debug-
flags before calling ntdll!RtlCreateHeap. You must also run the application under a
level-3 debugger, for example, BoundsChecker or the Visual C++ debugger, so that the
Win32 heap debugging options will be enabled.

Any time you pass a process-type as a parameter, any and all options are performed for
each heap within the process.

The HEAP32 command and all of its options work on either a single specified heap
handle or ALL the heaps for an entire process.

Example: The following command performs a heap validation for all the heaps in the
Test32 process:
HEAP 32 -v test32

When you specify a bare (for example, 0x140000), SoftICE assumes it is in the current
context. You can use the ADDR command to change to the appropriate context, if
necessary.

In some cases, the actual physical memory that backs a particular linear address will
not be present in memory, because it has been paged out by the operating system. In
these cases, the HEAP32 command detects, avoids, and, where possible, continues to
operate without the “not-present” pages. If not-present memory prevents the HEAP32
command from performing its work, you are notified of that condition. When
possible the HEAP32 command skips not-present pages and continues processing at a
point where physical memory is present. Because not-present memory prevents the
HEAP32 command from performing a full validation of a heap, the validation routines
indicate success, but let you know that only a partial validation could be performed.

Output Base Base address of the heap, that is, the heap handle.

Id Heap ID.

Cmmt/Psnt/Rsvd Amount of committed, present, and reserved memory used for
heap entries.

Segments Number of heap segments within the heap.
116 SoftICE Command Reference

SoftICE Commands
Flags Heap flags, for example, HEAP_GROWABLE (0x02).

Process Process that owns the heap.

If you specify the -W switch, the following information displays:

Base This is the address of the heap entry.

Type Type of the heap entry.

Size Size of the heap-entry. Typically, this is the number of bytes available
to the application for data storage.

Seg# Heap segment in which the heap-entry is allocated.

Flags Heap entry flags.

If you specify the -S switch, the following additional information displays:

Seg# Segment number of the heap segment.

Segment Range Linear address range that this segment maps to.

Cmmt/Psnt/Rsvd Amount of committed, present, and reserved memory for this heap
segment.

Max UCR Maximum uncommitted range of linear memory. This value specifies
the largest block that can be created within this heap segment.

Heap Entry Description

HEAP Represents the heap header.

SEGMENT Represents a heap segment.

ALLOC Active heap entry

FREE Inactive heap entry

VABLOCK Virtually allocated block (VAB)
SoftICE Command Reference 117

SoftICE Commands
Example The following example displays a basic heap summary for every heap in every process.

HEAP32

See Also For Windows 3.1, Windows 9x, and Windows NT/2000/XP, refer to HEAP on page
108. For Windows 9x, refer to HEAP32 on page 111.

Base Id Cmmt/Psnt/Rsvd Segments Flags Process

00230000 01 0013/0013/00ED 1 00000002 csrss

7F6F0000 02 0008/0008/00F8 1 00007008 csrss

00400000 03 001C/001A/0024 1 00004003 csrss

7F5D0000 04 0005/0005/001B 1 00006009 csrss

00460000 05 00F6/00F1/001A 2 00003002 csrss

005F0000 06 000B/000B/0005 1 00005002 csrss

7F2D0000 07 002D/002D/02D3 1 00006009 csrss

02080000 08 0003/0003/0001 1 00001062 csrss

023C0000 09 0016/0014/00EA 1 00001001 csrss
118 SoftICE Command Reference

SoftICE Commands
HERE Windows 3.1, Windows 9x, Windows NT/2000/XP Flow Control

F7

Go to the current cursor line.

Syntax HERE

Use When the cursor is in the Code window, the HERE command executes until the
program reaches the current cursor line. HERE is only available when the cursor is in
the Code window. If the Code window is not visible or the cursor is not in the Code
window, use the G command instead. Use the EC command (default key F6), if you
want to move the cursor into the Code window.

To use the HERE command, place the cursor on the source statement or assembly
instruction to which you want to execute. Enter HERE or press the function key that
HERE is programmed to (default key F7).

The HERE command sets a single, one-time execution breakpoint set at the address of
the current cursor position, arms all sticky breakpoints, and exits from SoftICE.

Execution begins at the current CS:EIP and continues until the execution breakpoint
is encountered, the window pop-up key sequence is used, or a sticky breakpoint
occurs. When SoftICE pops up, for any of these reasons, the one-time execution
breakpoint is cleared.

If the Register window is visible when SoftICE pops up, all registers that have been
altered since the HERE command was issued display with the bold video attribute.

For Windows 3.1

The non-sticky execution breakpoint uses an INT 3 instruction breakpoint.

For Windows 9x and Windows NT/2000/XP

The non-sticky execution breakpoint uses debug registers unless none are available, in
which case, it uses an INT 3 instruction.

Example The following command sets an execution breakpoint at the current cursor position,
exits from SoftICE, and begins execution at the current CS:EIP.

HERE
SoftICE Command Reference 119

SoftICE Commands
HS Windows 9x, Windows NT/2000/XP System Information

Search the history buffer for the specified string.

Syntax HS [- | +] string

Use You can search forward (which is the default) using the ’+’, or backward, using ’-’. If
you enter this command without parameters, SoftICE uses the previous search,
starting from the last string found.

Use single quotation marks to search for text that includes spaces.

Example Enter the following command to find the first load notifications for the net module in
the history buffer.

:hs ’load32 mod=net’

See Also S, SS
120 SoftICE Command Reference

SoftICE Commands
HWND Windows 3.1, Windows 9x System Information

Display information on Window handles.

Syntax For Windows 3.1

HWND [level] [task-name]

For Windows 9x

HWND [-x][hwnd | [[level][process-name]]

level Windows hierarchy number. 0 is the top level, 1 is the next level and
so on. The window levels represent a parent child relationship. For
example, a level 1 window has a level 0 parent.

For Windows NT/
2000/XP, refer to the
HWND on page
124.

task-name Any currently loaded Windows task. These names are available with
the TASK command.

-x Display extended information about a window.

hwnd Windows handle.

process-name Name of any currently loaded process.

Use Specifying a window handle as a parameter displays only the information for that
window handle. If you specify a window handle, you do not need to specify the
optional parameters for level and process-name.

Output For each window handle, the following information is displayed:

Class Name Class name or atom of class that this window belongs to.

Window Procedure Address of the window procedure for this window.
SoftICE Command Reference 121

SoftICE Commands
Example The following example displays the output of the HWND command fro the MSWORD
process with no other parameters set.

HWND msword

The following example displays part of the output follows of the HWND command for
the WINWORD process with the -x option set. The -x option displays extended
information about a window.

HWND -x winword

Handle hQueue QOwner Class Procedure

0F4C(0) 087D MSWORD #32769 DESKTOP

0FD4(1) 080D MSWORD #32768 MENUWND

22C4(1) 087D MSWORD OpusApp 0925:0378

53E0(2) 087D MSWORD OpusPmt 0945:1514

2764(2) 087D MSWORD a_sdm_Msft 0F85:0010

2800(3) 087D MSWORD OpusFedt 0F85:0020

2844(3) 087D MSWORD OpusFedt 0F85:0020

2428(2) 087D MSWORD OpusIconBar 0945:14FE

2888(2) 087D MSWORD OpusFedt 0945:14D2

Window Handle : (0288) Level (1)

 Parent : 16A7:000204CC

 Child : NULL

 Next : 16A7:00020584

 Owner : NULL

 Window RECT : (9,113) - (210,259)

 Client RECT : (10,114) - (189,258)

 hQueue : 1C97

 Size : 16

 QOwner : WINWORD

 hrgnUpdate : NULL

 wndClass : 16A7:281C

 Class : ListBox

 hInstance : (349E) (16 bit hInstance)
122 SoftICE Command Reference

SoftICE Commands
See Also For Windows NT/2000/XP, refer to HWND on page 124.

 lpfnWndProc : 2417:000057F8

 dwFlags1 : 40002

 dwStyle : 44A08053

 dwExStyle : 88

 dwFlags2 : 0

 ctrlID/hMenu : 03E8

 WndText : NULL

 unknown1 : 4734

 propertyList : NULL

 lastActive : NULL

 hSystemMenu : NULL

 unknown2 : 0

 unknown3 : 0000

 classAtom : C036

 unknown4 : 4CAC

 unknown5 : A0000064

Window Handle : (0288) Level (1)
SoftICE Command Reference 123

SoftICE Commands
HWND Windows NT/2000/XP System Information

Display information on Window handles.

Syntax HWND [-x][-c] [hwnd-type | desktop-type | process-type |
thread-type | module-type | class-name]

-x Extended. Display extended information about each window handle.

-c Children. Force the display of the window hierarchy when searching
by thread-type, module-type, or class-name.

hwnd-type Window handle or pointer to a window structure.

desktop-type Desktop handle or desktop pointer to a window structure (3.51 only).

process-type, thread-
type or module-type Window owner-type. A value that SoftICE can interpret as being of a

specific type such as process name, thread ID, or module image base.

class name Name of a registered window class.

Use The HWND command enumerates and displays information about window handles.

The HWND command allows you to isolate windows that are owned by a particular
process, thread or module, when you specify a parameter of the appropriate type.

For Windows 3.1
and Windows 9x,
refer to HWND on
page 121.

The extended option (-x) shows extended information about each window.

When you specify the extended option, or an owner-type (process-type, thread-type,
or module-type) as a parameter, the HWND command will not automatically
enumerate child windows. Specifying the children option (-c) forces all child windows
to be enumerated regardless of whether they meet any specified search criteria.

Output For each HWND that is enumerated, the following information is displayed:

Handle HWND handle (refer to OBJTAB on page 174 for more information).
Each window handle is indented to show its child and sibling
relationships to other windows.

Class Registered class name for the window, if available (refer to CLASS on
page 49 for more information).

WinProc Address of the message callback procedure. Depending on the callback
type, this value is displayed as a 32-bit flat address or 16-bit
selector:offset.
124 SoftICE Command Reference

SoftICE Commands
TID Owning thread ID.

Module Owning module name (if available). If the module name is unknown,
the module handle will be displayed as a 32-bit flat address or 16-bit
selector:offset, depending on the module type.

Example The following example uses the HWND command without parameters or options.

HWND

Handle Class WinProc TID Module

01001E #32769 (Desktop) 5FBFE425 24 winsrv
 050060 #32770 (Dialog) 60A29304 18 winlogon
 010044 SAS window class 022A49C4 18 winlogon
 010020 #32768 (PopupMenu) 5FBEDBD5 24 winsrv

010022 #32769 (Desktop) 5FBFE425 24 winsrv
 010024 #32768 (PopupMenu) 5FBEDBD5 24 winsrv
 030074 Shell_TrayWnd 0101775E 67 Explorer
 030072 Button 01012A4E 67 Explorer
 0800AA TrayNotifyWnd 010216C4 67 Explorer
 03003E TrayClockWClass 01028C85 67 Explorer
 030078 MSTaskSwWClass 01022F69 67 Explorer
 030076 SysTabControl32 712188A8 67 Explorer
 05007A tooltips_class32 7120B43A 67 Explorer
 03003C tooltips_class32 7120B43A 67 Explorer
 2E00F0 NDDEAgnt 016E18F1 4B nddeagnt

1C0148 CLIPBOARDWNDCLASS 034F:2918 2C OLE2
 9B0152 DdeCommonWindowClass 77C2D88B 2C ole32
 3200F2 OleObjectRpcWindow 77C2D73B 2C ole32
 0800A2 DdeCommonWindowClass 77C2D88B 67 ole32
 030086 OleMainThreadWndClass 77C2DCF2 67 ole32
 030088 OleObjectRpcWindow 77C2D73B 67 ole32
 03008A ProxyTarget 71E6869A 67 shell32
 03008C ProxyTarget 71E6869A 67 shell32
 030070 ProxyTarget 71E6869A 67 shell32
 04007C ProxyTarget 71E6869A 67 shell32
 0400CC OTClass 0100D7F3 67 Explorer
 0300CA DDEMLEvent 5FC216AB 67 winsrv
 0300C6 DDEMLMom 60A2779D 67 00000000
 0300C0 #42 0BB7:0776 78 MMSYSTEM
 0300D2 WOWFaxClass 01F9F7A8 78 WOWEXEC
 060062 ConsoleWindowClass 5FCD23C7 2B winsrv
 0300B4 WOWExecClass 03CF:0B3E 78 WOWEXEC
SoftICE Command Reference 125

SoftICE Commands
 030068 Progman 0101B1D3 67 Explorer
 0E00BC SHELLDLL_DefView 71E300E8 67 shell32
 040082 SysListView32 7121A0EC 67 shell32
 030080 SysHeader32 7120B06F 67 shell32

Notes: The output from the previous example enumerates two desktop windows (handles
1001E and 10022), each with its own separate window hierarchy. This is because the
system can create more than one object of type Desktop, and each Desktop object has
its own Desktop Window which defines the window hierarchy. If you use the
HWND command in a context that does not have an assigned Desktop, the HWND
command enumerates all objects of type Desktop.

Because the system may create more than one object of type Desktop, the HWND
command accepts a Desktop-type handle as a parameter. This allows the window
hierarchy for a specific Desktop to be enumerated. You can use the command
OBJTAB DESK to enumerate all existing desktops in the system.

The following is an example of using the HWND command with a specific window
handle.

HWND 400a0

Handle Class WinProc TID Module
0400A0 Progman 0101B1D3 74 Explorer

The following is an example of enumerating only those windows owned by thread 74.

HWND 74

Handle Class WinProc TID Module
 2F00F0 Shell_TrayWnd 0101775E 74 Explorer
 0500CE Button 01012A4E 74 Explorer
 0500C4 TrayNotifyWnd 010216C4 74 Explorer
 040074 TrayClockWClass 01028C85 74 Explorer
 0500C6 MSTaskSwWClass 01022F69 74 Explorer
 0400C8 SysTabControl32 712188A8 74 Explorer
 3700F2 tooltips_class32 7120B43A 74 Explorer
 040066 tooltips_class32 7120B43A 74 Explorer
 0F00BC DdeCommonWindowClass 77C2D88B 74 ole32
 040068 OleMainThreadWndClass 77C2DCF2 74 ole32
 0500CC OleObjectRpcWindow 77C2D73B 74 ole32
 2600BA ProxyTarget 71E6869A 74 shell32
 0400D0 ProxyTarget 71E6869A 74 shell32
 0400CA ProxyTarget 71E6869A 74 shell32
 070094 ProxyTarget 71E6869A 74 shell32
 04009E OTClass 0100D7F3 74 Explorer
 480092 DDEMLEvent 5FC216AB 74 winsrv
 09004A DDEMLMom 60A2779D 74 00000000
126 SoftICE Command Reference

SoftICE Commands
 0400A0 Progman 0101B1D3 74 Explorer
 0500C0 SHELLDLL_DefView 71E300E8 74 shell32
 070090 SysListView32 7121A0EC 74 shell32
 050096 SysHeader32 7120B06F 74 shell32

Note: A process-name always overrides a module of the same name. To search by module,
when there is a name conflict, use the module handle (base address or module-
database selector) instead. Also, module names are always context sensitive. If the
module is not loaded in the current context (or the CSRSS context), the HWND
command interprets the module name as a class name instead.

The following example shows the output when the extended option (-x) is used.

HWND -x 400a0

See Also For Windows 3.1 and Windows 9x, refer to HWND on page 121.

Hwnd : 0400A0 (7F2D7148)

Class Name : Progman

Module : Explorer

Window Proc : 0101B1D3

Win Version : 4.00

Title : Program Manager

Desktop : 02001F (00402D58)

Parent : 010022 (7F2D0C28)

1st Child : 0500C0 (7F2D7600)

Style : CLIPCHILDREN | CLIPSIBLINGS | VISIBLE | POPUP

Ex. Style : TOOLWINDOW | A0000000

Window Rect : 0, 0, 1024, 768 (1024 x 768)

Client Rect : 0, 0, 1024, 768 (1024 x 768)
SoftICE Command Reference 127

SoftICE Commands
I Windows 3.1, Windows 9x, Windows NT/2000/XP I/O Port

Input a value from an I/O port.

Syntax I[size] port

size

port Port address.

Use You use the I command to read and display a value from a specified hardware port.
Input can be done from byte, word, or dword ports. If you do not specify size, the
default is byte.

Except for the interrupt mask registers, the I command does an actual I/O instruction,
so it is displays the actual state of the hardware port. However, in the case of
virtualized ports, the actual data returned by the I command may not be the same as
the virtualized data that an application would see.

The only ports that SoftICE does not do I/O on are the interrupt mask registers (Port
21 and A1). For those ports, SoftICE shows the value that existed when SoftICE
popped up.

Example The following example performs an input from port 21, which is the mask register for
interrupt controller one.

I 21

Value Description

B Byte

W Word

D DWORD
128 SoftICE Command Reference

SoftICE Commands
I1HERE Windows 3.1, Windows 9x, Windows NT/2000/XP Mode Control

Pop up on embedded INT 1 instructions.

Syntax I1HERE [on | off]

Use Use the I1HERE command to specify that any embedded interrupt 1 instruction brings
up the SoftICE screen. This feature is useful for stopping your program in a specific
location. When I1HERE is on, SoftICE checks to see whether an interrupt is really an
INT 1 in the code before popping up. If it is not an INT 1, SoftICE will not pop up.

To use this feature, place an INT 1 into the code immediately before the location
where you want to stop. When the INT 1 occurs, it brings up the SoftICE screen. At
this point, the current EIP is the instruction after the INT 1 instruction.

If you do not specify a parameter, the current state of I1HERE displays.

The default is I1HERE off.

This command is useful when you are using an application debugging tool such as
BoundsChecker. Since these tools rely on INT 3’s for breakpoint notifications, I1HERE
allows you to use INT 1s as hardwired interrupts in your code without triggering the
application debugger.

For Windows 3.1 and Windows 9x

VMM, the Windows memory management VxD, executes INT 1 instructions prior to
certain fatal exits. If you have I1HERE ON, you can trap these. The INT 1s generated
by VMM are most often caused by a page fault with the registers set up as follows:

• EAX=faulting address

• ESI points to an ASCII message

• EBP points to a CRS (Client Register Structure as defined in the DDK include file
VMM.INC).

Example The following example turns on I1HERE mode. Any INT 1s generated after this point
bring up the SoftICE screen.

I1HERE on
SoftICE Command Reference 129

SoftICE Commands
I3HERE Windows 3.1, Windows 9x, Windows NT/2000/XP Mode Control

Pop up on INT 3 instructions.

Syntax I3HERE [on | off | DRV]

DRV Enable INT 3 handling above 2GB only. This supports trapping of a
driver’s call to DebugBreak().

Use Use the I3HERE command to specify that any interrupt 3 instruction pops up SoftICE.
This feature is useful for stopping your program in a specific location.

To use this feature, set I3HERE on, and place an INT 3 instruction into your code
immediately before the location where you want to stop. When the INT 3 occurs, it
brings up the SoftICE screen. At this point, the current EIP is the instruction after the
INT 3 instruction.

If you are developing a Windows program, the DebugBreak() Windows API routine
performs an INT 3.

If you do not specify a parameter, the current state of I3HERE displays.

Note: If you are using an application debugging tool such as the Visual C debugger or
NuMega’s BoundsChecker, you should place INT 1s in your code instead of INT 3s.
Refer to I1HERE on page 129.

Example The following example turns on I3HERE mode. Any INT 3s generated after this point
cause SoftICE to pop up.

I3HERE on

When the command I3HERE==ON, and you are using a level -3 debugger, such as
BoundsChecker, SoftICE traps on any INT 3 breakpoints installed by the level-3
debugger. The following example shows how to avoid this situation. Set
I3HERE==OFF, and use the GENINT command to reactivate the breakpoint. This
returns control to the level -3 debugger, and SoftICE does not trap further INT 3s.

I3HERE off
GENINT 3

See Also GENINT, I3HERE, SET
130 SoftICE Command Reference

SoftICE Commands
IDT Windows 3.1, Windows 9x, Windows NT/2000/XP System Information

Display the Interrupt Descriptor Table.

Syntax IDT [interrupt-number]

interrupt-number Interrupt-number to display information

Use The IDT command displays the contents of the Interrupt Descriptor Table after
reading the IDT register to obtain its address.

The IDT command without parameters displays the IDT’s base address and limit, as
well as the contents of all entries in the table. If you specify an optional interrupt-
number, only information about that entry is displayed.

For Windows NT/2000/XP

Almost all interrupt handlers reside in NTOSKRNL, so it is very useful to have exports
loaded for it so that the handler names are displayed.

Note: NTOSKRNL must be the current symbol table (refer to TABLE on page 228) to view
symbol names.

Output Each line of the display contains the following information:

interrupt number 0 - 0FFh (5Fh for Windows 3.1, Windows 9x).

interrupt type One of the following:

address Selector:offset of the interrupt handler.

selector’s DPL Selector’s descriptor privilege level (DPL), which is either 0, 1, 2 or 3.

Type Description

CallG32 32-bit Call Gate

CallG16 16-bit Call Gate

TaskG Task Gate

TrapG16 16-bit Trap Gate

TrapG32 32-bit Trap Gate

IntG32 32-bit Interrupt Gate

IntG16 16-bit Interrupt Gate
SoftICE Command Reference 131

SoftICE Commands
present bit P or NP, indicating whether the entry is present or not present.

Owner+Offset For Windows 9x and Windows NT/2000/XP only: Symbol or owner
name plus the offset from that symbol or owner.

Example The following command shows partial output of the IDT command with no
parameters.

IDT

Int Type Sel:Offset Attributes Symbol/Owner
IDTbase=C000ABBC Limit=02FF
0000 IntG32 0028:C0001200 DPL=0 P VMM(01)+0200
0001 IntG32 0028:C0001210 DPL=3 P VMM(01)+0210
0002 IntG32 0028:C00EEDFC DPL=0 P VTBS(01)+1D04
0003 IntG32 0028:C0001220 DPL=3 P VMM(01)+0220
0004 IntG32 0028:C0001230 DPL=3 P VMM(01)+0230
0005 IntG32 0028:C0001240 DPL=3 P VMM(01)+0240
0006 IntG32 0028:C0001250 DPL=0 P VMM(01)+0250
0007 IntG32 0028:C0001260 DPL=0 P VMM(01)+0260
0008 TaskG 0068:00000000 DPL=0 P
0009 IntG32 0028:C000126C DPL=0 P VMM(01)+026C
000A IntG32 0028:C000128C DPL=0 P VMM(01)+028C

The following command shows the contents of one entry in the IDT.

IDT d

Int Type Sel:Offset Attributes Symbol/Owner
000D IntG32 0028:C00012B0 DPL=0 P VMM(01)+02B0
132 SoftICE Command Reference

SoftICE Commands
INTOBJ Windows NT/2000/XP System Information

Display information on system interrupt objects.

Syntax INTOBJ [vector | interrupt-object-address]

Use The INTOBJ command displays information about interrupt objects that are current in
the system. If you enter INTOBJ without parameters, SoftICE lists all interrupt objects
with the following information:

• Object Address

• Vector

• Service Address

• Service Context

• IRQL

• Mode

• Affinity Mask

• Symbol

If you issue the command with a vector or address, SoftICE displays information about
the specified interrupt object.

Example The following example displays information about all the current interrupt objects in
the system.

INTOBJ

Object Service Service Affinity
Address Vector Address Context IRQL Mode Mask Symbol
807D0D88 31 80802D90 807D1030 1A Edge 01
80750D88 33 808030F0 807500F8 18 Edge 01
80750B08 34 808030F0 807513F8 17 Edge 01
807E0968 35 80802D30 807E1008 16 Edge 01
807E28A8 39 80802D50 807E9C48 12 Edge 01
80792D88 3B 80802ED0 8078D158 10 Level 01
807D18C8 3C 80802D70 807D1030 0F Edge 01
808F2428 3E 8022BF58 808F2850 0D Edge 01
SCSIPORT!.text+0C98
807EB428 3F 8022BF58 807EB850 0C Edge 01
SCSIPORT!.text+0C98
SoftICE Command Reference 133

SoftICE Commands
The following example shows the information SoftICE displays for a particular
interrupt object:

INTOBJ 31

Interrupt Object at 807D0D88
Length: 01E4
List Forward Link: 807D0D8C
Object List Back Link: 807D0D8C
Interrupt Service Routine address: 80802D90
Interrupt Service Routine context: 807D1030
Spinlock: 807D155C
Vector: 31
Device IRQL: 1A
Save Floating Point: FALSE
Processor Affinity Mask: 01
Processor Number: 00
Share interrupt: TRUE
Interrupt mode: Edge
134 SoftICE Command Reference

SoftICE Commands
IRP Windows 98, Windows Me, Windows NT/2000/XP System Information

Display information about an I/O Request Packet (IRP).

Syntax IRP [-f | -n | -p | -a] [irp-address]

-f Display all IRP stack locations.

-n Display the next IRP stack location.

-p Walk the previous IRP stack location.

-a Iterates through all threads on a system and shows the IRP for each
thread.

irp-address Address of the start of the IRP structure to be displayed.

Use The IRP command displays the contents of the I/O Request Packet and the contents of
associated current I/O stack located at the specified address. Note that the command
does not check the validity of the IRP structure at the specified address, so any address
will be accepted by SoftICE as an irp-address. Be careful to pass the IRP command a
valid IRP address.

The IRP fields shown by SoftICE are not documented in their entirety here, as
adequate information about them can be found in the DDK file NTDDK.H. A few
fields deserve special mention, however, since device driver writers find them
particularly useful:

Flags Flags used to define IRP attributes.

StackCount The number of stack locations that have been allocated for the IRP. A
common device driver bug is to access non-existent stack locations, so
this value may be useful in determining when this has occurred.

CurrentLocation This number indicates which stack location is the current one for the
IRP. Again, this value, combined with the previous StackCount, can
be used to track down IRP stack-related bugs.

Cancel This boolean is set to TRUE if the IRP has been cancelled as a result
of an IRP cancellation call. This happens when the IRP’s result is no
longer needed so the IRP will not complete.

Tail.Overlay.
CurrentStackLoc Address of current stack location. The contents of this stack location

are displayed after the IRP, as illustrated in the example of the
command given below.
SoftICE Command Reference 135

SoftICE Commands
Cancel This boolean is set to TRUE if the IRP has been cancelled as a result
of an IRP cancellation call. An IRP may be cancelled when the IRP’s
result is no longer needed so that the IRP will not complete.

These fields in the current stack location may be useful:

Major Function and
Minor Function These fields indicate what type of request the IRP is being used for.

The major function is used in determining which request handler will
be called when an IRP is received by a device driver.

Device Object Pointer to the device object at which the IRP is currently stationed. In
other words, the IRP has been sent to, and is in the process of being
received by, the device driver owning the device object.

File Object Pointer to the file object associated with the IRP. It can contain
additional information that serves as IRP parameters. For example, file
system drivers use the file object path name field to determine the
target file of a request.

Completion Routine This field is set when a driver sets a completion routine for an IRP
through the IoSetCompletionRoutine call. Its value is the address of
the routine that will be called when a lower-level driver (associated
with a stack location one greater than the current one) completes
servicing of the IRP and signals that it has done so with
IoCompleteRequest.

Example The following example shows the output for the IRP command.

IRP eax

MdlAddress * : 00000000
Flags : 00000404 IRP_SYNCHRONOUS_API|IRP_CLOSE_OPERATION
AssociatedIrp : 00000000
&ThreadListEntry : FD8D9B18
IoStatus : 00000000
RequestorMode : 00
PendingReturned : False
StackCount : 03
CurrentLocation : 03
Cancel : False
CancelIrql : 00
ApcEnvironment : 00
Zoned : True
UserIosb * : FD8D9B20
UserEvent * : FB11FB40
Overlay : 00000000 00000000
CancelRoutine * : 00000000
UserBuffer * : 00000000
136 SoftICE Command Reference

SoftICE Commands
Tail.Overlay
&DeviceQueueEntry : FD8D9B48
Thread * : FD80A020
AuxiliaryBuffer * : 00000000
&ListEntry : FD8D9B60
CurrentStackLoc * : FD8D9BC0
OrigFileObject * : FD819E08

Tail.Apc * : FD8D9B48
Tail.ComplKey : 00000000
CurrentStackLocation:
MajorFunction : 12 IRP_MJ_CLEANUP
MinorFunction : 00
Control : 00
Flags : 00
Others : 00000000 00000000 00000000 00000000
DeviceObject * : FD851E40
FileObject * : FD819E08
CompletionRout * : 00000000
Context * : 00000000
SoftICE Command Reference 137

SoftICE Commands
IRQ Windows 98, Windows Me, Windows NT/2000/XP System Information

Display information about system hardware interrupts (IRQs).

Syntax IRQ [irq-number]

irq-number Specific IRQ to be displayed.

Use The IRQ command will display information about the hardware interrupts (IRQs) in
the system. Issuing the IRQ command with no parameters will display a list of all the
hardware interrupts on the system, along with assigned vector and status information.

The output from this command differs depending on whether the machine is
equipped with an 8259-style PIC, or an APIC. On a PIC machine, the IRQ command
will report the vector and status (masked/unmasked) for each IRQ in the system. The
vector field is an index into the system’s Interrupt Descriptor Table, and can be used
with the SoftICE IDT command to locate the interrupt service routine associated with
a hardware interrupt. The status field indicates whether the hardware interrupt is
currently masked at the interrupt controller.

On APIC systems, the IRQ command gets its information by reading the I/O APIC.
The command displays the vector, delivery mode, status, trigger mode, and
destination information for each IRQ. As with the PIC version of the IRQ command,
the vector number is an offset into the system’s IDT, and can be used to locate the
interrupt service routine for the hardware interrupt. For a complete explanation of the
other information reported by the IRQ command, refer to the I/O APIC
documentation.

Example The following example shows the output from the IRQ command on a machine
equipped with a PIC:

:irq

 IRQ Vector Status

 00 30 Unmasked
 01 31 Unmasked
 02 32 Unmasked
 03 33 nmasked
 04 34 Unmasked
 05 35 Masked
 06 36 Masked
 07 37 Masked
 08 38 Unmasked
 09 39 Unmasked
 0A 3A Masked
 0B 3B Masked
138 SoftICE Command Reference

SoftICE Commands
 0C 3C Unmasked
 0D 3D Masked
 0E 3E Unmasked
 0F 3F Unmasked

And here is the output from the IRQ command on an APIC machine:

:irq
Inti Vector Delivery Status Trigger Dest Mode Destination
01 93 Low. Pri Idle Edge Logical 0 1
03 B2 Low. Pri Idle Edge Logical 0 1
04 92 Low. Pri Idle Edge Logical 0 1
08 D1 Fixed Idle Edge Logical 0
09 B1 Low. Pri Pending Level Logical 0 1
0E 62 Low. Pri Idle Edge Logical 0 1
0F 82 Low. Pri Idle Edge Logical 0 1
10 83 Low. Pri Pending Level Logical 0 1
11 63 Low. Pri Idle Level Logical 0 1
13 B4 Low. Pri Pending Level Logical 0 1
17 73 Low. Pri Pending Level Logical 0 1
I/O unit id register: 02000000
I/O unit version register: 00178020

One use of the IRQ command is in identifying the interrupt service routine associated
with a particular device in the system. This final example illustrates using SoftICE
commands to determine the address of the ISR for a USB host controller.

First, the USB command returns the PCI addresses of all the USB host controllers in
the system:

:usb
3 USB Host Controllers Found

HC 0: UHCI at PCI Bus 0 Device 1F Function 2
HC 1: UHCI at PCI Bus 0 Device 1F Function 4
HC 2: OHCI at PCI Bus 4 Device F Function 0

Next, we use the PCI command to determine the interrupt line assigned to the host
controller by the OS. In this case, we’ll get the interrupt line for the first of the three
host controllers listed above:

:pci 0 1f 2

Bus 00 Device 1F Function 02
Vendor: 8086Intel Corporation
Device: 2442
Revision: 04
Device class: 0C Serial bus controller
Device subclass: 03 Universal Serial Bus controller
Device sub-subclass: 00
Base address 4: 0000FF80 32 bytes I/O
Interrupt line: 13 Interrupt pin: 04 Min_Gnt: 00 MaxLat: 00
SoftICE Command Reference 139

SoftICE Commands
Cache line size: 00 Latency timer: 00 Header type: 00 BIST: 00
Command Register:
 I/O:1 Mem:0 BusMast:1 Special:0 MemInv:0
 Parity:0 Wait:0 SERR:0 Back2Back:0 Snoop:0
Status Register:
 Caps:0 66MHz Cap:0 UDF:0 FB2B Cap:1 DevSel: Medium
 PERRDet:0 PERRRcvd:0 TASgnld:0 TARcvd:0 MARcvd:0 SERRSgnld:0

Notice that the interrupt line (bolded in this example) is set to 13 for this device. Now
we issue the IRQ command, specifying the interupt line from the PCI command:

:irq 13

Inti Vector Delivery Status Trigger Dest Mode Destination
13 B4 Low. Pri Pending Level Logical 0 1
I/O unit id register: 02000000
I/O unit version register: 00178020

This tells us that the interrupt vector assigned to this device is B4. Finally, we use the
IDT command to get the address of the ISR:

:idt b4
Int Type Sel:Offset Attributes Symbol/Owner
00B4 IntG32 0008:827D8BEC DPL=0 P

The IDT command shows that the ISR address for this USB host controller is
0008:827D8BEC.
140 SoftICE Command Reference

SoftICE Commands
KEVENT Windows NT/2000/XP System Information

Display Kernel Events.

Syntax KEVENT [kernel-event]

kernel-event Kernel event address.

Use The KEVENT command displays information about kernel events that are current in
the system. If you enter KEVENT without parameters, SoftICE walks through the
BaseNamedObjects directory, where the Win32 subsystem typically stores named
kernel objects, and displays the Kernel Events in that list. If you specify a kernel event
address, SoftICE displays information about the specified event.

Example The following example shows how to use the KEVENT command to display
information about a specific event.

kevent 807AB730

Address Type State Name
807AB730 Notification Signalled LSA_RPC_SERVER_ACTIVE

See Also KMUTEX, KSEM
SoftICE Command Reference 141

SoftICE Commands
KMUTEX Windows NT/2000/XP System Information

Display information about kernel mutexes.

Syntax KMUTEX [kernel-mutex]

kernel-mutex Kernel mutex address

Use If you issue the KMUTEX command without any parameters, SoftICE walks through
the BaseNamedObjects directory, where the Win32 subsystem typically stores named
kernel objects, and displays information about all the Kernel mutexes in that list.

If you issue the KMUTEX command with an expression, SoftICE displays information
about the kernel mutex at that address.

Example The following example shows how to use the KEVENT command to display
information about a specific object.

kmutex 80733470

Address State Own.KTEB(TID) Aban APC Name
80733470 Signalled 0(0) N 0 OLESharedTablesMutex

See Also FMUTEX, KEVENT, KSEM
142 SoftICE Command Reference

SoftICE Commands
KSEM Windows NT/2000/XP System Information

Display information about kernel semaphores.

Syntax KSEM [semaphore-address]

semaphore
-address Address of a kernel semaphore object.

Use If you issue the KSEM command without any parameters, SoftICE walks through the
BaseNamedObjects directory, where the Win32 subsystem typically stores named
kernel objects, and displays information about all the Kernel semaphores in that list.

If you issue the KSEM command with an expression, SoftICE displays information
about the kernel semaphores at that address.

Example The following example shows how to use the KSEM command to display information
about a specific semaphore object.

ksem 807060F0

Address Limit State Name
807060F0 1 Signalled NDDEAgent

See Also KEVENT, KMUTEX
SoftICE Command Reference 143

SoftICE Commands
LDT Windows 3.1, Windows 9x, Windows NT/2000/XP System Information

Display the Local Descriptor Table.

Syntax LDT [selector]

selector Starting LDT selector to display.

Use The LDT command displays the contents of the Local Descriptor Table after reading its
location from the LDT register. If there is no LDT, an error message will be printed. If
you specify an optional selector, only information on that selector is displayed. If the
starting selector is a Global Descriptor Table (GDT) selector (that is, bit 2 is 0), the GDT
displays rather than the LDT. The first line of output contains the base address and
limit of the LDT.

For Windows 9x and Windows NT/2000/XP

Even when there is no LDT, the LDT command can display an LDT you supply as a
command parameter. This optional parameter can be a GDT selector that represents
an LDT. You can locate selectors of type LDT with the GDT command.

For Windows NT/2000/XP

The LDT command is process specific and only works in processes that have an LDT.
Use the ADDR command to determine which processes contain LDTs. Use ADDR to
switch to those processes, then use the LDT command to examine their LDTs.

Output Each line of the display contains the following information:

selector value Lower two bits of this value reflect the descriptor privilege level.

selector type
Type Description

Code16 16-bit code selector

Data16 16-bit data selector

Code32 32-bit code selector

Data32 32-bit data selector

CallG32 32-bit Call Gate selector

CallG16 16-bit Call Gate selector

TaskG32 32-bit Task Gate selector
144 SoftICE Command Reference

SoftICE Commands
selector base Linear base address of the selector.

selector limit Size of the selector.

selector DPL Selector’s descriptor privilege level (DPL), either 0, 1, 2 or 3.

present bit P or NP, indicating whether the selector is present or not present.

segment attributes One of the following:

Example The following example shows sample output for the LDT command.

LDT

Sel. Type Base Limit DPL Attributes
LDTbase=8008B000 Limit=4FFF
0004 Reserved 00000000 00000000 0 NP
000C Reserved 00000000 00000000 0 NP
0087 Data16 80001000 00000FFF 3 P RW
008F Data16 00847000 0000FFFF 3 P RW
0097 Data16 0002DA80 0000021F 3 P RW
009F Data16 00099940 000029FF 3 P RW
00A7 Data16 0001BAC0 000000FF 3 P RW
00AF Data16 C11D9040 0000057F 3 P RW

TaskG16 16-bit Task Gate selector

TrapG32 32-bit Trap Gate selector

TrapG16 16-bit Trap Gate selector

IntG32 32-bit Interrupt Gate selector

IntG16 16-bit Interrupt Gate selector

Reserved Reserved selector

Type Description

RW Data selector is readable and writable.

RO Data selector is read only.

RE Code selector is readable and executable.

EO Code selector is execute only.

B TSS’s busy bit is set.

Type Description
SoftICE Command Reference 145

SoftICE Commands
LHEAP Windows 3.1, Windows 9x, Windows NT/2000/XP System Information

Display the Windows local heap.

Syntax LHEAP [selector | module-name]

selector LDT data selector.

module-name Name of any 16-bit module.

Use The LHEAP command displays the data objects that a Windows program has allocated
on the local heap. If you do not specify a selector, the value of the current DS register
is used. The specified selector is usually the Windows program’s data selector. To find
this, use the HEAP command on the Windows program you are interested in and look
for an entry of type data. Each selector that contains a local heap is marked with the
tag LH.

If a module-name is entered, SoftICE uses the modules default data segment for the
heap walk.

For Windows 9x and Windows NT/2000/XP

To find all segments that contain a local heap, use the HEAP command with the -L
option.

For Windows NT/2000/XP

The LHEAP command only works if the current process contains a WOW box.

Output For each local heap entry the following information displays:

offset 16-bit offset relative to the specified selector base address.

size Size of the heap entry in bytes.

type Type of entry. One of the following:

Type Description

FIX Fixed (not moveable)

MOV Moveable

FREE Available memory
146 SoftICE Command Reference

SoftICE Commands
handle Handle associated with each element. For fixed elements, the handle is
equal to the address that is returned from LocalAlloc(). For moveable
elements, the handle is the address that will be passed to LocalLock().

At the end of the list, the total amount of memory in the local heap displays.

Example The following command displays all local heap entries belonging to the GDI default
local heap.

LHEAP gdi

Offset Size Type Handle

93D2 0046 Mov 0DFA

941E 0046 Mov 0C52

946A 0046 Mov 40DA

94B6 004E Mov 0C66

950A 4A52 Mov 0E52

Used: 19.3K
SoftICE Command Reference 147

SoftICE Commands
LINES Windows 3.1, Windows 9x, Windows NT/2000/XP Customization

Change the number of lines for the SoftICE display.

Syntax For Windows 3.1

LINES [25 | 43 | 50]

For Windows 9x and Windows NT/2000/XP

With Universal Video Driver:

LINES numlines

numlines Number of screen lines. Set this to any value from 25 to 128.

With VGA Text Video Driver:

LINES [25 | 43 | 50 | 60]

Use The LINES command changes SoftICE’s character display mode. For VGA Text Driver
displays, it allows different display modes: 25-line, 43-line, 50-line, and 60-line mode.
The 50-, and 60-line modes are only valid on VGA display adapters. For the Universal
Video Driver, you can specify any number of lines greater than 25.

Using LINES with no parameters displays the current state of LINES. The default
number of display lines is 25.

If you enter the ALTSCR command, SoftICE changes to 25-line mode automatically. If
you change back to a VGA display and want a larger line mode, enter the LINES
command again. To display in 50-line mode on a serial terminal, first place the
console mode of the serial terminal into 50-line mode using the DOS MODE
command.

For Windows 9x and Windows NT/2000/XP

You can display 60 lines for single monitor debugging.

When debugging in serial mode, all line counts are supported for VGA displays.

Example The following command changes the SoftICE display to 53 lines using the Universal
Video Driver. The current font affects the number of lines SoftICE can display.

LINES 53

See Also SET, WIDTH
148 SoftICE Command Reference

SoftICE Commands
LOCALS Windows 9x, Windows NT/2000/XP Symbol/Source Command

List local variables from the current stack frame.

Syntax LOCALS

Use Use the LOCALS command to list local variables from the current stack frame to the
Command window.

Output The following information displays for each local symbol:

• Stack Offset

• Type definition

• Value, Data, or structure symbol ({...})

The type of the local variable determines whether a value, data, or structure symbol (
{...}) is displayed. If the local is a pointer, the data it points to is displayed. If it is a
structure, the structure symbol is displayed. If the local is neither a pointer nor a
structure, its value is displayed.

Hint: You can expand structures, arrays, and character strings to display their contents. Use
the WL command to display the Locals window, then double-click the item you want
to expand. Note that expandable items are delineated with a plus (+) mark.

Example The following example displays the local variables for the current stack frame.

LOCALS

[EBP-4] struct_BOUNCEDATA * pdb=0x0000013F <{...}>
[EBP+8] void * hWnd=0x000006D8

See Also TYPES, WL
SoftICE Command Reference 149

SoftICE Commands
M Windows 3.1, Windows 9x, Windows NT/2000/XP Miscellaneous

Move data.

Syntax M source-address l length dest-address

source-address Start of address range to move.

length Length in bytes.

dest-address Start of destination address range.

Use The specified number of bytes are moved from the source-address to the dest-address.

Example The following command moves 2000h bytes (8KB) from memory location DS:1000h
to ES:5000h.

M ds:1000 l 2000 es:5000
150 SoftICE Command Reference

SoftICE Commands
MACRO Windows 9x, Windows NT/2000/XP Customization

Define a new command that is a superset of SoftICE commands.

Syntax MACRO [macro-name] | [*] | [= “macro body”]

macro-name Case-insensitive, 3-8 character name for the macro being defined, or
the name of an existing macro.

macro-body Quoted string that contains a list of SoftICE commands and
parameters separated by semi-colons (;).

* Delete one or all defined macros.

= Define (or redefine) a macro.

Use The MACRO command is used to define new Macro commands that are supersets of
existing SoftICE commands. Defined macros can be executed directly from the
SoftICE command line. The MACRO command is also used to list, edit, or delete
individual macros. Macros are directly related to breakpoint actions, as breakpoint
actions are simply macros that do not have names, and can only be executed by the
SoftICE breakpoint engine.

If no options are provided, a list of all defined macros will be displayed, or if a macro-
name is specified, that macro will be inserted into the command buffer so that it can
be edited.

When defining or redefining a macro, the following form of the macro command is
used:

MACRO macro-name = “macro-body”

The macro-name parameter can be between 3 and 8 characters long, and may contain
any alphanumeric character and underscores (_). If the macro-name parameter
specifies an existing macro, the MACRO command redefines the existing macro. The
macro-name cannot be a duplicate of an existing SoftICE command. The macro-name
must be followed by an equal sign “=”, which must be followed by the quoted string
that defines the macro-body.

The macro-body parameter must be embedded between beginning and ending
quotation marks (“). The macro-body is made up of a collection of existing SoftICE
commands, or defined macros, separated by semi-colons. Each command may contain
appropriate ‘literal’ parameters, or can use the form %<parameter#>, where
parameter# must be between 1 and 8. When the macro is executed from the
command line, any parameter references will expand into the macro-body from the
parameters specified when the command was executed. If you need to embed a literal
quote character (”) or a percent sign (%) within the macro body precede the character
SoftICE Command Reference 151

SoftICE Commands
with a backslash character (\). Because the backslash character is used for escape
sequences, to specify a literal backslash character, use two consecutive backslashes (\\).
The final command within the macro-body does not need to be terminated by a semi-
colon.

You can define macros in the SoftICE Loader using the same syntax described here.
When you load SoftICE, each macro definition is created and available for use. SoftICE
displays a message for each defined macro to remind you of its presence. Since macros
consume memory, you can set the maximum number of named and unnamed macros
(that is, breakpoint actions) that can be defined during a SoftICE session. The default
value of 32 is also the minimum value. The maximum value is 256.

Note: A macro-body cannot be empty. It must contain one or more non-white space
characters. A macro-body can execute other macros, or define another macro, or even
a breakpoint with a breakpoint action. A macro can even refer to itself, although
recursion of macros is not extremely useful because there is no programmatic way to
terminate the macro. Macros that use recursion execute up to the number of times
that SoftICE permits (32 levels of recursion are supported), no more and no less. Even
with this limitation, macro recursion can be useful for walking nested or linked data
structures. To get a recursive macro to execute as you expect, you have to devise clever
macro definitions.

Example The following example uses the MACRO command without parameters or options.

MACRO

XWHAT = "WHAT EAX;WHAT EBX;WHAT ECX; WHAT EDX; WHAT ESI; WHAT EDI"
OOPS = "I3HERE OFF;GENINT 3"
1shot = "bpx eip do \"bc bpindex \""

Note: The name of the macro is listed to the left, and the macro body definition to the right.

The following examples show other basic uses for the MACRO command:

MACRO * Delete all named macros.

MACRO oops * Delete the macro named oops.

MACRO xwhat Edit the macro named xwhat.

Note: Because macros can be redefined at any time, when you use the edit form of the
MACRO command (MACRO macro-name) the macro definition will be placed in the
edit buffer so that it can be edited. If you do not wish to modify the macro, press ESC.
The existing macro will remain unchanged. If you modify the macro-body without
changing the macro name, the macro will be redefined (assuming the syntax is
correct!)

The following example is a simple macro definition:

MACRO help = “h”
152 SoftICE Command Reference

SoftICE Commands
The next example uses a literal parameter within the macro-body. Its usefulness is
limited to specific situations or values.

MACRO help = “h exp”

In the previous example, the SoftICE H command is executed with the parameter EXP
every time the macro executes. This causes the help for the SoftICE EXP command to
display.

This is a slightly more useful definition of the same macro:

MACRO help= “help %1”

In the revised example, an optional parameter was defined to pass to the SoftICE H
command. If the command is executed with no parameters, the argument to the H
command is empty, and the macro performs exactly as the first definition; help for all
commands is displayed. If the macro executes with 1 parameter, the parameter is
passed to the H command, and the help for the command specified by parameter 1 is
displayed. For execution of macros, all parameters are considered optional, and any
unused parameters are ignored.

The following are examples of legal macro definitions:

MACRO qexp = “addr explorer; query %1” qexp

or

qexp 1 40000

MACRO 1shot = “bpx %1 do \”bc bpindex\”” 1shot eip

or

1shot @esp

MACRO ddt = “dd thread” ddt

MACRO ddp = “dd process” ddp

MACRO thr = “thread %1 tid” thr

or

thr -x
SoftICE Command Reference 153

SoftICE Commands
The following are examples of illegal macro definitions, with an explanation and a
corrected example.

Illegal Definition MACRO dd = “dd dataaddr”

Corrected Example MACRO dda = “dd dataaddr”

Explanation: The macro name is a duplication of a SoftICE command name.
SoftICE commands cannot be redefined.

Illegal Definition MACRO aa = “addr %1”

Corrected Example MACRO aaa = “addr %1”

Explanation: The macro command name is too short. A macro name must be
between 3 and 8 characters long.

Illegal Definition MACRO pbsz = ? hibyte(hiword(*(%1-8))) << 5

Corrected Example MACRO pbsz = “? hibyte(hiword(*(%1-8))) << 5”

Explanation: The macro body must be surrounded by quote characters (“).

Illegal Definition MACRO tag = “? *(%2-4)”

Corrected Example MACRO tag = “? *(%1-4)”

Explanation: The macro body references parameter %2 without referencing
parameter %1. You cannot reference parameter %n+1 without having
referenced parameter %n.
154 SoftICE Command Reference

SoftICE Commands
MAP32 Windows 3.1, Windows 9x, Windows NT/2000/XP System Information

Display a memory map of all 32-bit modules currently loaded in memory.

Syntax For Windows 3.1

MAP32 [-u | -s] | [module-name | module-handle]

-u Displays only modules in user space.

-s Displays only modules in system space.

module-name Windows module-name.

module-handle Base address of a module image.

For Windows 9x and Windows NT/2000/XP

MAP32 [module-name | module-handle |address]

module name Windows module-name.

module handle Base address of a module image.

address Any address that falls within an executable image.

Use MAP32 with no parameters lists information about all 32-bit modules.

If you specify either a module-name or module-handle as a parameter, only sections
from the specified module are shown. For each module, one line of data is printed for
every section belonging to the module.

Since the MAP32 command takes any address that falls within an executable image,
an easy way to see the memory map of the module that contains the current EIP is to
enter:

MAP32 eip

For Windows 9x

No matter what process/context you are in, MAP32 shows the same list of drivers
because memory above 2GB is globally mapped. However, MAP32 shows different lists
of applications/DLLs depending on the current process or context, because they are
always private to an address context.
SoftICE Command Reference 155

SoftICE Commands
For Windows NT/2000/XP

MAP32 lists kernel drivers as well as applications and DLLs that exist in the current
process. They can be distinguished in the map because drivers always occupy
addresses above 2GB, while applications and DLLs are always below 2GB.

Output Each line in MAP32’s output contains the following information:

Owner Module name.

Name Section name from the executable file.

Obj# Section number from the executable file.

Address Selector:offset address of the section.

Size Section’s size in bytes.

Type Type and attributes of the section, as follows:

Example For Windows 3.1

The following example illustrates sample output for MAP32 executed on a Visual C
module.

MAP32 msvcrt10

Type Attributes

CODE Code

IDATA Initialized Data

UDATA Uninitialized Data

RO Read Only

RW Read/Write

SHARED Object is shared

Owner Obj Name Obj# Address Size Type

MSVCRT10 .text 0001 2197:86C81000 00024A00 CODE RO

MSVCRT10 .bss 0002 219F:86CA6000 00001A00 UDATA RW

MSVCRT10 .rdata 0003 219F:86CA8000 00000200 IDATA RO

MSVCRT10 .edata 0004 219F:86CA9000 00005C00 IDATA RO

MSVCRT10 .data 0005 219F:86CAF000 00006A00 IDATA RW

MSVCRT10 .idata 0006 219F:86CB6000 00000A00 IDATA RW

MSVCRT10 .reloc 0007 219F:86CB7000 00001800 IDATA RO
156 SoftICE Command Reference

SoftICE Commands
MAPV86 Windows 3.1, Windows 9x, Windows NT/2000/XP System Information

Display the MS-DOS memory map of the current Virtual Machine.

Syntax MAPV86 [address]

address Segment:offset type address.

Use If no address parameter is specified, a map of the entire current virtual machine’s V86
address space is displayed. Information about the area in the map where a certain
address lies can be obtained by specifying the address.

Pages of DOS VM memory may not be valid (not mapped in) when you enter the
MAPV86 command. If this occurs, the output from the MAPV86 command will
terminate with a PAGE NOT PRESENT message. Often, just popping out of, and then
back into, SoftICE will result in those pages being mapped in.

A useful application of the MAPV86 command is in obtaining addresses to which a
symbol table must be aligned with the SYMLOC command. DOS programs that were
started before Windows will not automatically have their symbol information mapped
to their location in V86 memory. You can enable source-level debugging for these
global DOS programs by performing the following steps.

• Use the MAPV86 command to get the starting address of the programs static code
segment. Add 10h to the address if the program in an executable (.EXE).

• Use the SYMLOC command to set the symbol table alignment to that value.

For Windows NT/2000/XP

The MAPV86 command is process specific. You must be in an NTVDM process because
these are the only ones that contain V86 boxes. There is no global MS-DOS in
Windows NT/2000/XP.

Output For Windows 3.1 and Windows 9x

The following summary information is displayed by the MAPV86 command.

VM ID Virtual machine (VM) ID. VM1 is the System VM.

VM handle 32-bit virtual machine handle.

CRS pointer VM’s 32-bit client register structure pointer.

VM address 32-bit linear address of the VM. This is the high linear address of the
virtual machine, which is also currently mapped to linear address 0.
SoftICE Command Reference 157

SoftICE Commands
If the current CS:IP belongs to a MAPV86 entry, that line will be highlighted. Each line
of the MAPV86 display contains the following information:

Start Segment:offset start address of the component.

Length Length of the component in paragraphs.

Name Owner name of the component.

Example The following example illustrates how to use the MAPV86 command to display the
entire V86 map for the current VM.

MAPV86

ID=01 Handle=80441000 CRS Ptr=80013390 Linear=80C00000

Start Length Name

0000:0000 0040 Interrupt Vector Table

0040:0000 0030 ROM BIOS Variables

0070:0000 025D I/O System

02CD:0000 08E6 DOS

0BB5:0012 0000 NUMEGA

0C8B:0000 00E8 SOFTICE1

0D41:0000 00B6 XMSXXXX0

10D0:0000 038F SMARTAAR
158 SoftICE Command Reference

SoftICE Commands
MOD Windows 3.1 System Information

Display the Windows 3.1 module list.

Syntax MOD [partial-name]

partial-name Prefix of the Windows module name.

Use This command displays the Windows module list in the Command window. A
module is a Windows application or DLL. All 16-bit modules will be displayed first,
followed by all 32 bit modules. If a partial name is specified, only those modules that
begin with the name will be displayed.

Output For each loaded module the following information is displayed:

module handle 16-bit handle that Windows assigns to each module. It is actually a
16-bit selector of the module database record which is similar in
format to the EXE header of the module file.

For Windows 9x and
Windows NT/2000/
XP, refer to MOD on
page 161.

pe-header Selector:offset of the PE File header for that module.
Note: A value is only displayed in this column for 32-bit modules.

module name Name specified in the .DEF file using the ’NAME’ or ’LIBRARY’
keyword.

file name Full path and file name of the module’s executable file.

Example The following example shows abbreviated output of MOD to display all modules in
the system:

MOD

hMod PEHeader Module Name .EXE File Name

0117 KERNEL C:\WINDOWS\SYSTEM\KRNL386.EXE

0147 SYSTEM C:\WINDOWS\SYSTEM\SYSTEM.DRV

014F KEYBOARD C:\WINDOWS\SYSTEM\KEYBOARD.DRV

0167 MOUSE C:\WINDOWS\SYSTEM\LMOUSE.DRV

01C7 DISPLAY C:\WINDOWS\SYSTEM\VGA.DRV

01E7 SOUND C:\WINDOWS\SYSTEM\MMSOUND.DRV

0237 COMM C:\WINDOWS\SYSTEM\COMM.DRV
SoftICE Command Reference 159

SoftICE Commands
See Also For Windows 9x and Windows NT/2000/XP, refer to MOD on page 161.

0000 2987:80756080 W32SKRNL C:\WINDOWS\SYSTEM\win32s\w32skrnl.dll

12C7 2987:86C20080 FREECELL C:\WIN32APP\FREECELL\FREECELL.EXE

1FC7 2987:86C40080 CARDS C:\WIN32APP\FREECELL\CARDS.dll

1FDF 2987:86C70080 w32scomb C:\WINDOWS\SYSTEM\win32s\w32scomb.dll

hMod PEHeader Module Name .EXE File Name
160 SoftICE Command Reference

SoftICE Commands
MOD Windows 9x, Windows NT/2000/XP System Information

Display the Windows module list.

Syntax MOD [-u | -s] | [partial-name*]

-u Displays only modules in user space.

-s Displays only modules in system space.

partial-name Prefix of the Windows module name

Use This command displays the Windows module list in the Command window. If a
partial name is specified, only modules that begin with the name will be displayed.
SoftICE displays modules in the following order:

For Windows 3.1,
refer to MOD on
page 159.

• 16-bit modules

• 32-bit driver modules (Windows NT/2000/XP only)

• 32-bit application modules

For Windows 9x

The module list is global. A module is a Windows application or DLL. All modules
have an hMod value.

For Windows NT/2000/XP

The Mod command is process specific. All modules will be displayed that are visible
within the current process. This includes all 16-bit modules, all 32-bit modules, and
all driver modules. This means if you want to see specific modules, you must switch to
the appropriate address context before using the MOD command.

You can distinguish application modules from driver modules because application
modules have base addresses below 2GB (80000000h).

The 16-bit modules will be the only modules that have an hMod value.

Output For each loaded module the following information is displayed:

module handle 16-bit handle that Windows assigns to each module. It is actually a
16-bit selector of the module database record which is similar in
format to the EXE header of the module file.
SoftICE Command Reference 161

SoftICE Commands
base Base linear address of the executable file. This is also used as the
module handle for 32-bit executables.
Note: A value is only displayed in this column for 32-bit modules.

pe-header Selector:offset of the PE File header for that module.
Note: A value is only displayed in this column for 32-bit modules.

module name Name specified in the .DEF file using the ’NAME’ or ’LIBRARY’
keyword.

file name Full path and file name of the module’s executable file.

Example The following example shows abbreviated output of MOD used on the NTVDM WOW
process:

MOD

hMod Base PEHeader ModuleName File Name

021F KERNEL D:\WINNT35\SYSTEM32\KRNL386.EXE

020F SYSTEM D:\WINNT35\SYSTEM32\SYSTEM.DRV

01B7 KEYBOARD D:\WINNT35\SYSTEM32\KEYBOARD.DRV

02B7 MOUSE D:\WINNT35\SYSTEM32\MOUSE.DRV

02CF DISPLAY D:\WINNT35\SYSTEM32\VGA.DRV

02E7 SOUND D:\WINNT35\SYSTEM32\SOUND.DRV

0307 COMM D:\WINNT35\SYSTEM32\COMM.DRV

031F USER D:\WINNT35\SYSTEM32\USER.EXE

0397 GDI D:\WINNT35\SYSTEM32\GDI.EXE

0347 WOWEXEC D:\WINNT35\SYSTEM32\WOWEXEC.EXE

03DF SHELL D:\WINNT35\SYSTEM32\SHELL.DLL

0C3F WFWNET D:\WINNT35\SYSTEM32\WFWNET.DRV

0BFF MMSYSTEM D:\WINNT35\SYSTEM32\MMSYSTEM.DLL

0BF7 TIMER D:\WINNT35\SYSTEM32\TIMER.DRV

80100000
80100080

ntoskrnl \WINNT35\System32\ntoskrnl.exe

80400000
80400080

hal \WINNT35\System32\hal.dll

80010000
80010080

atapi atapi.sys

80013000
80013080

SCSIPORT \WINNT35\System32\Drivers\SCSIPORT.SYS
162 SoftICE Command Reference

SoftICE Commands
See Also For Windows 3.1, refer to MOD on page 159.

80001000
80001080

Atdisk Atdisk.sys

8001B000
8001B080

Scsidisk Scsidisk.sys

803AE000
803AE080

Fastfat Fastfat.sys

FB000000
FB000080

Floppy \SystemRoot\System32\Drivers\Floppy.SYS

FB010000
FB010080

Scsicdrm \SystemRoot\System32\Drivers\Scsicdrm.SYS

FB020000
FB020080

Fs_Rec \SystemRoot\System32\Drivers\Fs_Rec.SYS

FB030000
FB030080

Null \SystemRoot\System32\Drivers\Null.SYS

hMod Base PEHeader ModuleName File Name
SoftICE Command Reference 163

SoftICE Commands
MSR Windows 98, Windows Me, Windows NT/2000/XP System Information

Display or write to the Model Specific Registers.

Syntax MSR [[-u] [begin-reg [end-reg] | [-w reg [hidword_val] lowdword_val]"

-u Show unreadable registers.

begin-reg Starting register to display.

end-reg Ending register to display.

-w Write to a register.

reg Identity of the register.

hidword_val Write to the upper 32 bits of the register.

lowdword_val Write to the lower 32 bits of the register.

Use The MSR command is used to display or write to the Model Specific Registers. When
no options are given to the MSR command, SoftICE will attempt to display all of these
registers including the Value, Architectural Name, Read/Write flags, and Description.
If you read a register that SoftICE does not have internal knowledge of, SoftICE will
display the register number and its 64-bit value.

SoftICE has internal knowledge of the registers that make up the "Architectural MSRS"
as defined in Volume 3 of the Pentium 4 System Programming Guide documentation
from Intel.

Note: Not all registers are available on all platforms. SoftICE makes no attempt to validate
MSR writing. Writing to the Model Specific Registers has the potential to be very
dangerous. Be certain of the destination and the value that you are writing.

Example The following examples show the output from the MSR command.

In the first example, SoftICE displays all MSR registers from 0x10 through 0x20:

:msr 0x10 0x20

Reg Value Acc ID Name Description
10 00000028:E03DB054 RW IA32_TIME_STAMP_CTR Time Stamp Counter
17 00000028:E03DB054 RW
18 00000000:00000000
1B 00000000:FEE00100 RW IA32_APIC_BASE APIC Location and Status
164 SoftICE Command Reference

SoftICE Commands
This time SoftICE displays non-readable registers. This is useful for finding
undocumented Model Specific Registers.

:msr -u 0x10 0x17

Reg Value Acc ID Name Description
10 0000002C:3B6C9262 RW IA32_TIME_STAMP_CTR Time Stamp Counter
NTICE: Error reading MSR 0x11
NTICE: Error reading MSR 0x12
NTICE: Error reading MSR 0x13
NTICE: Error reading MSR 0x14
NTICE: Error reading MSR 0x15
NTICE: Error reading MSR 0x16
17 20410000:00000000 R IA32_PLATFORM_ID Platform ID

In the final example, the Time Stamp Counter Register is read and then reset.

Note: This action causes the SoftICE blinking cursor to stop functioning until a popdown.

:msr 10
Reg Value Acc ID Name Description
10 0000002D:62496928 RW IA32_TIME_STAMP_CTR Time Stamp Counter

:msr -w 10 0

:msr 10
Reg Value Acc ID Name Description
10 00000000:2E350910 RW IA32_TIME_STAMP_CTR Time Stamp Counter
SoftICE Command Reference 165

SoftICE Commands
NET Windows 9x, Windows NT/2000/XP Customization

Remote debugging over standard IP ethernet connection.

Syntax NET START <target-IP-address | DHCP > [MASK=subnet-mask]
[GATEWAY=IP-address]

target-IP-address IP-address of the machine on which you are running SoftICE.

DHCP Dynamic Host Configuration Protocol. Instructs SoftICE to get the
IP parameters from your network DHCP server.

MASK=subnet-mask The network subnet mask.

GATEWAY=ip-address The IP address of the network gateway.

NET ALLOW <remote-IP-address | ANY > [AUTO] [PASSWORD=password]

ANY Allows a machine from any IP address to connect to the target
machine.

AUTO Allows a remote machine that has connected successfully to reconnect.
This is useful if the remote machine loses its connection and must
reconnect. If AUTO is not specified, you must reissue the NET
ALLOW command on the target machine before another connection
can be made.

PASSWORD=password A case-sensitive password that is required of users to get access to
SoftICE on the target machine.

NET COMx <baud-rate>

x COM port number. Valid values are 1 through 4. This command uses
only standard port addresses.

baud-rate Any legal baud rate between 1200 and 115200

NET PING IP-address
NET RESET
NET STOP
NET HELP
NET STATUS
166 SoftICE Command Reference

SoftICE Commands
Use You can use the NET commands to run SoftICE on one machine (the target machine,)
so that it can be controlled remotely over a standard internet connection from
another machine (the remote machine.) To run SoftICE remotely you must replace the
adapter driver file on the target machine, with one provided in the SoftICE
distribution. For details on setting up the target machine, refer to the section “Setting
Up SoftICE for Remote Debugging.” in Chapter 10, “Customizing SoftICE,” in Using
SoftICE.

After installing the network adapter and driver, you can use the following NET
command options on the target machine to enable SoftICE to be controlled by a
remote machine.

The NET START command enables the IP stack in SoftICE. This command identifies
your IP parameters to SoftICE (IP-address, subnet-mask, and gateway address). If your
local network supports DHCP (Dynamic Host Configuration Protocol), you can tell
SoftICE to obtain the IP parameters from your network DHCP server. At this point, the
IP stack is running, but SoftICE does not allow remote debugging until you use the
NET ALLOW command to specify what other machine(s) can control SoftICE.

The NET ALLOW command tells SoftICE how to determine which machine(s) can be
used to remotely control SoftICE. A remote machine can be specified as a specific IP
address or ANY IP address. Access to control SoftICE can also be qualified by a case-
sensitive password.

The NET COMx command allows you to establish a remote debugging session over a
serial connection, including the ability to control the mouse and SoftICE window
remotely.

The NET PING command allows you to do a basic network connectivity test by
sending an ICMP Echo Request (PING) packet to an IP address. SoftICE sends the
request and indicates whether it receives a response within 4 seconds.

The NET RESET command terminates any active remote debugging session (IP or serial
connection) and cancels the effect of the previous NET ALLOW command.

The NET STOP command terminates any active remote debugging session (IP or serial
connection) and cancels the effect of the previous NET ALLOW command. It also
disables the IP stack.

The NET HELP command shows a list of the available network commands with their
respective syntax.

The NET STATUS command shows the current status of the network adapter. It
displays the current IP parameters (IP address, subnet mask, and gateway) and the
status of the remote debugging connection.

After the target machine is set up correctly, you issue the SIREMOTE command on the
remote machine to create the connection to the target machine. To use SIREMOTE,
copy SIREMOTE.EXE from the SoftICE installation directory to the remote machine.
The syntax for the SIREMOTE command is:

SIREMOTE <target-IP-address> [password]
SoftICE Command Reference 167

SoftICE Commands

g
The syntax for the SIREMOTE command with a serial connection is:

SIREMOTE COMx [<baud-rate>]

For more information about using the SIREMOTE command, refer to the section “Startin
the Remote Debugging Session” in Chapter 10, “Customizing SoftICE,” in Using
SoftICE.

Examples The following commands set up SoftICE on a target machine whose IP address is
10.0.0.5, and allows a remote machine whose IP address is 10.0.0.10 to connect to the
target machine and control SoftICE.

NET START 10.0.0.5
NET ALLOW 10.0.0.10

Because the NET ALLOW command does not include the AUTO option, the remote
user will only be allowed to connect to the target once.

The following commands set up SoftICE on a target machine that gets its IP address
from a DHCP server. It then allows any other machine to connect if the user has the
right password.

NET START DHCP
NET ALLOW ANY AUTO PASSWORD=NuMega

This NET ALLOW command specifies that any IP address can be used to connect to
the target machine if the user provides the proper password. The AUTO option tells
SoftICE to allow remote machines to connect more than once in case of disconnect.

See Also For more information on Remote Debugging, see Chapter 9 in Using SoftICE.
168 SoftICE Command Reference

SoftICE Commands
NTCALL Windows NT/2000/XP System Information

Display NTOSKRNL calls used by NTDLL.

Syntax NTCALL

Use The NTCALL command displays all NTOSKRNL calls that are used by NTDLL. Many of
the API’s in NTDLL are nothing more than a wrapper for routines in NTOSKRNL,
where the real work is done at level 0. If you use SoftICE to step through one of these
calls, you will see that it immediately performs an INT 2Eh instruction. The INT 2Eh
instructions serve as the interface for transitions between a privilege level 3 API and a
privilege level 0 routine that actually implements the call.

When an INT 2Eh is executed, the EDX register is set to point at the parameter stack
frame for the API and the EAX register is set to the index number of the function.
When the current instruction pointer reference is an INT 2Eh instruction, the SoftICE
disassembler will show the address of the privilege level 0 routine that will be called
when the INT 2Eh executes, along with the number of dword parameters that are
being passed in the stack frame pointed to by EDX. If you wish to see the symbol
name of the routine, you must load symbols for NTOSKRNL and make sure that it is
the current symbol table. Refer to TABLE on page 228.

Output The NTCALL command display all the level 0 API’s available. For each API, the
following information displays:

Func. Hexadecimal index number of the function passed in EAX.

Address Selector:offset address of the start of the function.

Params Number of dword parameters passed to the function.

Name Either the symbolic name of the function, or the offset within
NTOSKRNL if no symbols are loaded.

The following example shows the disassembler output. Note how SoftICE indicates
that the INT 2Eh instruction’s execution result in the NTOSKRNL function,
_NTSetEvent being called with 2 dword parameters.

ntdll!NtSetEvent

001B:77F8918C MOV EAX,00000095

001B:77F89191 LEA EDX,[ESP+04]

001B:77F89195 INT 2E ; _NtSetEvent(params=02)

001B:77F89197 RET 0008
SoftICE Command Reference 169

SoftICE Commands
Example The following example shows abbreviated output of the NTCALL command. It can be
seen from this listing that the NTOSKRNL routine, _NTAccessCheck, is located at
8:80182B9Eh, that it is assigned a function identifier of 1, and that it takes 8 dword
parameters.

00 0008:80160D42 params=06 _NtAcceptConnectPort

01 0008:80182B9E params=08 _NtAccessCheck

02 0008:80184234 params=0B _NtAccessCheckAndAuditAlarm

03 0008:80180C0A params=06 _NtAdjustGroupsToken

04 0008:80180868 params=06 _NtAdjustPrivilegesToken

05 0008:8017F9A6 params=02 _NtAlertResumeThread

06 0008:8017F95E params=01 _NtAlertThread

07 0008:8014B0C4 params=01 _NtAllocateLocallyUniqueId

08 0008:8014B39A params=03 _NtAllocateUuids
170 SoftICE Command Reference

SoftICE Commands
O Windows 3.1, Windows 9x, Windows NT/2000/XP I/O Port

Output a value to an I/O port.

Syntax O[size] port value

size

port Port address.

value Byte, word, or dword value as specified by size.

Use Output to PORT commands are used to write a value to a hardware port. Output can
be done to byte, word, or dword ports. If no size is specified, the default is B.

All outputs are sent immediately to the hardware with the exception of the interrupt
mask registers (Port 21h & A1h). These do not take effect until the next time you exit
from the SoftICE screen.

Example The following command performs an out to port 21, which unmasks all interrupts for
interrupt controller one.

O 21 0

Value Description

B Byte

W Word

D Dword
SoftICE Command Reference 171

SoftICE Commands
OBJDIR Windows 98, Windows Me, Windows NT/2000/XP System Information

Display objects in a Windows 98, Me, or NT/2000 Object Manager’s object directory.

Syntax OBJDIR [object-directory-name]

object-directory-name Name of the object as it appears in the Object Manager’s object
directory.

Use Use the OBJDIR command to display the named objects within the Object Manager’s
object directory. Using OBJDIR with no parameters displays the named objects within
the root object directory. To list the objects in a subdirectory, enter the full object
directory path.

Output The following information will be displayed by the OBJDIR command:

Object Address of the object body.

ObjHdr Address of the object header.

Name Name of the object.

Type Windows-defined data type of the object.

Example The following example is abbreviated output of OBJDIR listing objects in the Device
object directory.

OBJDIR device

Directory of \Device at FD8E7F30

Object ObjHdr Name Type

FD8CC750 FD8CC728 Beep Device

FD89A030 FD89A008 NwlnkIpx Device

FD889150 FD889128 Netbios Device

FD8979F0 FD8979C8 Ip Device

FD8C9ED0 FD8C9EA8 KeyboardClass0 Device

FD8C5038 FD8C5010 Video0 Device

FD8C4040 FD8C4018 Video1 Device
172 SoftICE Command Reference

SoftICE Commands
In the following example, the OBJDIR command is used with a specified object
directory pathname to list the objects in the \Device\Harddisk0 subdirectory.

OBJDIR \device\harddisk0

Directory of \Device\Harddisk0 at FD8D38D0

See Also OBJTAB

Object ObjHdr Name Type

FD8D3730 FD8D3708 Partition0 Device

FD8D3410 FD8D33E8 Partition1 Device

FD8D32D0 FD8D32A8 Partition2 Device

3 Object(s)
SoftICE Command Reference 173

SoftICE Commands
OBJTAB Windows NT/2000/XP System Information

Display entries in the WIN32 user object-handle table.

Syntax OBJTAB [handle | object-type-name | -h]

handle Object handle.

object-type-name One of the object-type-names, predefined by SoftICE:

-h Display list of valid object-type-names.

Use Use the OBJTAB command to display all entries in the master object-handle table
created and maintained by CSRSS, or to obtain information about a specific object or
objects of a certain type. The master object-handle table contains information for
translating user object-handles such as an hWnd or hCursor into the actual data that
represents the object.

If you use OBJTAB without parameters, SoftICE lists the full contents of the master
object-handle table. If an object handle is specified, just that object is listed. If an
object-type-name is entered, all objects in the master object-handle table of that type
are listed.

FREE Free handle

HWND Hwnd

Menu Menu or Sub-menu object

Icon (or Crsr) HICON or HCURSOR

DFRW DeferWindowPos data

HOOK Hook

TINF Thread Info data

QUE (3.51 only) Message queue

CPD Call Proc Data thunk

ACCL Accelerator table

WSTN Workstation object

DESK(3.51 only) Desktop object

DDE DDE String
174 SoftICE Command Reference

SoftICE Commands
Output The following information is displayed by the OBJTAB command:

Object Pointer to the object’s data.

Type Type of the object.

Id Object’s type ID.

Handle Win32 handle value for the object.

Owner CSRSS specific instance data for the process or thread that owns the
object.

Flags Object’s flags.

Example The following is an abbreviated example using the OBJTAB command without
parameters or options.

OBJTAB

See Also OBJDIR

Object Type Id Handle Owner Flags

7F2D4DA0 Hwnd 01 0004005C 7F2D5F88 00

7F2D85B8 Menu 02 0001005D 00298B40 00

7F2D4E58 Hwnd 01 0003005E 7F2D5F88 00

7F2D1820 Queue 07 0002005F 00000000 00

003E50E0 Accel. Table 09 00030060 00298B40 00
SoftICE Command Reference 175

SoftICE Commands
P Windows 3.1, Windows 9x, Windows NT/2000/XP Flow Control

F10, F12 for P RET

Execute one program step.

Syntax P [RET]

RET Return. Step until a return or return from interrupt instruction is
found.

Use The P command executes a logical program step. In assembly mode, one instruction at
the current CS:EIP is executed unless the instruction is a call, interrupt, loop, or
repeated string instruction. In those cases, the entire routine or iteration is completed
before control is returned to SoftICE.

If RET is specified, SoftICE will step until it finds a return or return from interrupt
instruction. This function works in either 16- or 32-bit code and also works in level 0
code.

The P command uses the single step flag for most instructions. For call, interrupt,
loop, or repeated string instructions, the P command uses a one-time INT 3
instruction execution breakpoint.

In source mode one source statement is executed. If the source statement involves
calling another procedure, the call is not followed. The called procedure is treated like
a single statement.

If the Register window is visible when SoftICE pops up, all registers that have been
altered since the P command was issued display with the bold video attribute. For call
instructions, the highlighted registers show what registers a subroutine has not
preserved.

In an unusually long procedure, there can be a noticeable delay when using the P RET
command, because SoftICE is single stepping every instruction.

For Windows 9x and Windows NT/2000/XP

The P command, by default, is thread specific. If the current EIP is executing in thread
X, SoftICE will not break until the program step occurs in thread X. This prevents the
case of Windows NT/2000/XP process switching or thread switching during the
program step causing execution to stop in a different thread or process than the one
you were debugging. To change this behavior, either use the SET command with the
THREADP keyword or disable thread-specific stepping in the troubleshooting SoftICE
initialization settings.
176 SoftICE Command Reference

SoftICE Commands
Example The following example executes one program step.

P

SoftICE Command Reference 177

SoftICE Commands
PACKET Windows 9x, Windows NT/2000/XP System Information

Display the contents of a network packet.

Syntax PACKET [address]

PACKET [address] [length]

PACKET ETHERNET | TOKEN-RING | ARCNET | FDDI

PACKET LINE | DETAIL | STRUCTURE

PACKET RAW | STANDARD

PACKET HELP

address Address of the network packet.

length Length of the network packet.

ETHERNET | TOKEN-RING | ARCNET | FDDI
 Specifies a packet type.

LINE | DETAIL | STRUCTURE
 LINE displays one line per packet; DETAIL displays detailed

information per packet; STRUCTURE produces a structured element
dump.

RAW | STANDARD RAW displays data in hexadecimal; STANDARD displays formatted/
interpreted data.

Use Use the PACKET command to display the contents of a network packet.

Output The output of the PACKET command varies depending on the options selected. See
the example below.

Example The following example shows the output of the PACKET command.

:packet 85edf6e8
Ethernet:
DIX:
Destination: 00A0C98AB20A Size: 003C
Source: 00B0D02CEE87 Type: 0800
178 SoftICE Command Reference

SoftICE Commands
IP:
IP version: 4 IP header length: 5 (32-bit WORDs)
Type of service: 00
Precedence = Routine
Delay = Normal
Throughput = Normal
Reliability = Normal
Packet length: 003C Packet ID: 9BF5
More fragments: NO Fragment offset: 0000
Time-to-live: 128 Protocol: ICMP(1) Header checksum: 9CC9 (GOOD)
Source host id: 172.23.100.153
Destination host id: 192.80.49.1

ICMP:
Type = Echo(8)
Code = 0
Checksum = 5C0E
Identifier = 512
Sequence Number = 15616
ICMP Data:
============================ Start of Text=========================
abcdefghijklmnopqrstuvwabcdefghi
============================= End of Text =========================
SoftICE Command Reference 179

SoftICE Commands
PAGE Windows 3.1, Windows 9x, Windows NT/2000/XP System Information

Display page table information.

Syntax PAGE [address [L length]]

address The virtual address, segment:offset address, or selector:offset address
about which you want to know page table information. The output
includes the virtual and physical address.

length Number of pages to display.

Use The PAGE command can be used to list the contents of the current page directory or
the contents of individual page table entries.

Note: Multiple page directories are used only by Windows NT/2000/XP.

In the x86 architecture, a page directory contains 1024 4-byte entries, where an entry
specifies the location and attributes of a page table that is used to map a range of
memory related to the entry’s position in the directory. (These ranges are shown on
the far right in the PAGE command’s output of the page directory.)

Each entry represents the location and attributes of a specific page within the memory
range mapped by the page table. An x86 processor page is 4KB in size, so a page table
maps 4MB of memory (4KB/page * 1024 entries), and the page directory maps up to
4GB of memory (4MB/page table * 1024 entries).

NT 4.0 uses the 4 MB page feature of the Pentium/Pentium Pro processors.
NTOSKRNL, HAL, and all boot drivers are mapped into a 4 MB page starting at 2 GB
(80000000h).

(Note: In the above paragraph, we assume that the user space is 2 GB. That may not be
the case; in some versions of NT 4.0 Advanced Server and some Windows 2000 server
products, the user space could be 3 GB.)

When you specify the address parameter, information about the page table entry that
maps the address is shown. This includes the following:

• The linear virtual address of the start of the page mapped by the entry.

• The physical address that corresponds to the start of the page mapped by the
entry.

• The page table entry attributes of the page. This information corresponds directly
to processor defined attributes. Page table attributes are represented by bits that
indicate whether or not the entry is valid, whether the page is dirty or has been
accessed, whether its a supervisor or user-mode page, and its access protections.
Only bit attributes that are set are shown by SoftICE.
180 SoftICE Command Reference

SoftICE Commands
• The page type. This information is interpreted from the Windows-defined bit field
in the page table entry and the types displayed by SoftICE correspond to
Windows definitions.

Use the length parameter with the address parameter to list information about a range
of consecutive page table entries. It should be noted that the PAGE command will not
cross page table boundaries when listing a range. This means that, if fewer entries are
listed than you specified, you must use a second PAGE command to list the pages
starting where the first listing stopped.

If no parameters are specified, the PAGE command shows the contents of the current
page directory. Each line listed represents 4MB of linear address space. The first line
shows the physical and linear address of the page directory. Each following line
displays the information in each page directory entry. The data shown for each entry
is the same as is described above for individual page table entries, however, in this
output addresses represent the locations of page tables rather than pages.

Output The following information is displayed by the PAGE command:

physical address If a page directory is being displayed then this is the physical address
of the page table that a page directory entry refers to. Each page
directory entry references one page table which controls 4MB of
memory.

If an address parameter is entered so that specific pages are displayed,
then this is the physical address that corresponds to the start of a page.

linear address For Windows 3.1 and Windows 9x only: If the page directory is being
displayed then this is the virtual address of a page table. This is the
address you would use in SoftICE to display the page table with the D
command.

If specific pages are being displayed, this is the virtual address of a
page. If a length was entered then this is the virtual address of the start
of each page.

attribute This is the attribute of the page directory or page table entry. The
valid attributes are, as follows:

Windows 3.1, Windows
9x, and Windows NT/
2000/XP

Windows NT/2000/XP Only

P Present S Supervisor

D Dirty RW Read/Write
SoftICE Command Reference 181

SoftICE Commands
type For Windows 3.1 and Windows 9x only: Each page directory entry
has a three-bit field that can be used by the operating system to classify
page tables. Windows classifies page tables into the following six
categories:

If a page is marked Not Present, then all that is displayed is NP followed by the dword
contents of the page table entry.

Example For Windows 3.1 and Windows 9x

Using the PAGE command with no parameters displays page directory information.
The following shows this PAGE command output.

PAGE

Page Directory Physical=002B6000 Linear=006B600

A Accessed 4M 4 MB page
(NT 4.0 only)

U User

R Read Only

NP Not Present

System Private

Instance Relock

VM Hooked

Physical Linear Attributes Type Linear Address Range

002B7000 006B7000 P A U System 00000000-003FFFFF

00109000 00509000 P A U System 00400000-007FFFFF

0010A000 0050A000 P U System 00800000-00BFFFFF

0010B000 0050B000 P U System 00C00000-00FFFFFF

0010C000 0050C000 P U System 01000000-013FFFFF

002B8000 006B8000 P A U System 80000000-803FFFFF

00106000 00506000 P A U System 80400000-807FFFFF

00107000 00507000 P U System 80800000-80BFFFFF

00108000 00508000 P U System 80C00000-80FFFFFF

002B7000 006B7000 P A U System 81000000-813FFFFF
182 SoftICE Command Reference

SoftICE Commands
Using the PAGE command with the address parameter displays the page table entry
that corresponds to the address you specify. In the following example, three page table
entries are shown starting with the page table entry that corresponds to address
00106018. Notice that when the length parameter is specified, the linear address is
truncated to the base address of the memory page that contains the specified address.

PAGE 00106018 l 3

The following example shows how the PAGE command can be used to find both the
virtual and physical address of selector:offset address.

PAGE #585:263C

For Windows NT/2000/XP

When the Page command displays information on either PTEs or PDEs for NT 4.0, 4
MB pages are indicated by the mnemonic “4M” in the Attributes column. The
following sample output shows the region starting at 2 GB.

PAGE
Page Directory Physical=00030000
Physical Attributes Linear Address Range
00000000 P A S RW 4M 80000000 - 803FFFFF
00400000 P A S RW 4M 80400000 - 807FFFFF
00800000 P A S RW 4M 80800000 - 80BFFFFF
00C00000 P A S RW 4M 80C00000 - 80FFFFFF
01034000 P A S RW 4M 81000000 - 813FFFFF

Linear Physical Attributes Type

00106000 00006000 P U VM

00107000 00007000 P U VM

00108000 00008000 P U VM

Linear Physical Attributes Type

0004A89C 00218442 P U Instance
SoftICE Command Reference 183

SoftICE Commands
The following example shows a partial listing of output from the PAGE command
when it is executed without parameters on Windows NT 3.51. In this case, PAGE
prints the page directory contents.

PAGE
Page Directory Physical=00030000
Physical Attributes Linear Address Range
00380000 P A U RW 00000000 - 003FFFFF
00611000 P A U RW 77C00000 - 77FFFFFF
00610000 P A U RW 7FC00000 - 7FFFFFFF
00032000 P A S RW 80000000 - 803FFFFF
00034000 P A S RW 80400000 - 807FFFFF
00035000 P A S RW 80800000 - 80BFFFFF
00033000 P A S RW 80C00000 - 80FFFFFF
00030000 P A S RW C0000000 - C03FFFFF
00040000 P A S RW C0400000 - C07FFFFF
00001000 P A S RW C0C00000 - C0FFFFFF

The following example shows how to use the PAGE command to display the attributes
and addresses of the page from which instructions are currently being executed.

PAGE eip

Linear Physical Attributes
80404292 00404292 P D A S RW
184 SoftICE Command Reference

SoftICE Commands
PAGEIN Windows 9x, Windows NT/2000/XP Category

Force a page of memory to be loaded into physical memory.

Syntax PAGEIN address

address Linear address of the page to be loaded.

Use In some cases, a SoftICE command cannot retrieve the data you request because the
actual physical memory that backs a particular linear address has been paged out by
the operating system and so is not present in memory. You can use the PAGEIN
command to force the page to be brought in from disk memory into physical memory.

Note: PAGEIN can be an unsafe command. This facility is recommended for OS experts
only. If the currently executing thread is not in a context in which it can touch
pageable memory, issuing PAGEIN can crash your system. You should be sure you
understand the state of your application and the effect of this command before
attempting to use it.

Example The following example shows the use of the PAGEIN command to load a page into
physical memory.

PAGEIN 401000

See Also PAGE
SoftICE Command Reference 185

SoftICE Commands
PAUSE Windows 3.1, Windows 9x, Windows NT/2000/XP Customization

Pause after each screen.

Syntax PAUSE [on | off]

Use The PAUSE command controls screen pause at the end of each page. If PAUSE is on,
you are prompted to press any key before information scrolls off the Command
window. The Enter key scrolls a single line at a time. Any other key scrolls a page at a
time. The prompt displays in the status line at the bottom of the Command window.

If PAUSE if off, the information automatically scrolls to the end of the command
output.

If you do not specify a parameter, the current state of PAUSE displays.

The default is PAUSE on.

Example The following command specifies that the subsequent Command window display will
not automatically scroll off the screen. You are prompted to press a key before
information scrolls off the screen.

PAUSE on

See Also SET
186 SoftICE Command Reference

SoftICE Commands
PCI Windows 9x, Windows NT/2000/XP System Information

Dump the configuration registers for each PCI device in the system.

Syntax PCI [-terse | [-raw] [-extended] [-b | -w | -d]]
 [bus device function]

-terse Dumps terse information that includes bus, device, and function
information as well as device and vendor IDs.

-raw Dumps the first 0x40 bytes of each function’s PCI space.

-extended Dumps all 256 bytes of each function’s PCI space.

-b | -w | -d Information is dumped in byte | word | doubleword format.

bus Bus number.

device Device number.

function Function number.

Use The PCI command dumps the registers for each PCI device in the system. Do not use
this command on non-PCI systems. Many of the entries are self-explanatory, but some
are not. Consult the PCI specification for more information about this output.

Example The following example illustrates a part of the output for the PCI command.

:pci -extended 0 1f 0

Bus 00 Device 1F Function 00
Vendor: 8086 INTEL CORP
Device: 2410
Revision: 02
Device class: 06 Bridge device
Device subclass: 01 ISA bridge
Device sub-subclass: 00
Interrupt line: 00 Interrupt pin: 00 Min_Gnt: 00 MaxLat: 00
Cache line size: 00 Latency timer: 00 Header type: 80 BIST: 00
I/O:1 Mem:1 BusMast:1 Special:1 MemInv:0
Parity:0 Wait:0 SERR:0 Back2Back:0 Snoop:0
SoftICE Command Reference 187

SoftICE Commands
40: 00000801 00000010 00000000 00000000
50: 00000000 00000000 00000881 00000010
60: 09098A09 00000090 00000000 00000000
90: 0000FCFF 00000000 00000000 00000000
A0: 00000220 00000000 00000000 00000000
C0: 00000000 00000804 00000000 00000001
D0: 00002006 00000F02 00000000 00000000
E0: C0000010 140F0C01 00112233 00000771
F0: 00600000 00000000 00000F3A 00000000

:pci -terse
00/00/00 8086-7124 INTEL CORP
00/01/00 8086-7125 INTEL CORP
00/1E/00 8086-2418 INTEL CORP
00/1F/00 8086-2410 INTEL CORP
00/1F/01 8086-2411 INTEL CORP
00/1F/02 8086-2412 INTEL CORP
00/1F/03 8086-2413 INTEL CORP
01/07/00 1274-1371 ENSONIQ AudioPCI
01/0C/00 10B7-9200 3COM CORP 3Com EtherLink 10/100 PCI
 NIC (3C905C-TX)
188 SoftICE Command Reference

SoftICE Commands
PEEK Windows 9x, Windows NT/2000/XP Display/Change Memory

Read from physical memory.

Syntax PEEK[size] address

size B (byte), W (word), or D (dword). Size defaults to B.

address Physical memory address.

Use PEEK displays the byte, word, or dword at a given physical memory location. PEEK is
useful for reading memory-mapped I/O registers.

Example The following example displays the dword at physical address FF000000.

PEEKD FF000000

See Also PAGE, PHYS, POKE
SoftICE Command Reference 189

SoftICE Commands
PHYS Windows 3.1, Windows 9x, Windows NT/2000/XP System Information

Display all virtual addresses that correspond to a physical address.

Syntax PHYS physical-address

physical-address Memory address that the x86 generates after a virtual address has been
translated by its paging unit. It is the address that appears on the
computer’s BUS, and is important when dealing with memory-
mapped hardware devices such as video memory.

Use Windows uses x86 virtual addressing support to define a relationship between virtual
addresses, used by all system and user code, and physical addresses that are used by
the underlying hardware. In many cases a physical address range may appear in more
than one page table entry, and therefore more than one virtual address range.

SoftICE does not accept physical addresses in expressions. To view the contents of
physical memory you must use the PHYS command to obtain linear addresses that can
be used in expressions.

For Windows 9x and Windows NT/2000/XP

The PHYS command is specific to the current address context. It searches the Page
Tables and Page Directory associated with the current SoftICE address context.

Example Physical address A0000h is the start of VGA video memory. Video memory often
shows up in multiple virtual address in Windows. The following example shows three
different virtual addresses that correspond to physical A0000.

PHYS a0000

000A0000
004A0000
80CA0000
190 SoftICE Command Reference

SoftICE Commands
POKE Windows 9x, Windows NT/2000/XP Display/Change Memory

Write to physical memory.

Syntax POKE[size] address value

size B (byte), W (word), or D (dword). Size defaults to B.

address Physical memory address.

value Value to write to memory.

Use POKE writes a byte, word, or dword value to a given physical memory location. POKE
is useful for writing to memory-mapped I/O registers.

Example The following example writes the dword value 0x12345678 to physical address
FF000000.

POKED FF000000 12345678

See Also PAGE, PEEK, PHYS
SoftICE Command Reference 191

SoftICE Commands
Print
Screen
Key

Windows 3.1, Windows 9x, Windows NT/2000/XP Customization

Print contents of screen.

Syntax PRINT SCREEN key

Use Pressing PRINT SCREEN dumps all the information from the SoftICE screen to your
printer. By default, the printer port is LPT1. Use the PRN command to change your
printer port. Since SoftICE accesses the hardware directly for all of its I/O, Print Screen
works only on printers connected directly to a COM or LPT port. It does not work on
network printers.

If you do not want to dump the information directly to a printer, you can save the
SoftICE history buffer to a file. In the SoftICE Symbol Loader, choose SAVE SOFTICE
HISTORY AS . . . from the File menu. For more information, see Using SoftICE.

For Windows 9x and Windows NT/2000/XP

From a DOS VM, use the DLOG.EXE utility to log the SoftICE Command window
information.

See Also PRN
192 SoftICE Command Reference

SoftICE Commands
PRN Windows 3.1, Windows 9x, Windows NT/2000/XP Customization

Set printer output port.

Syntax PRN [lptx | comx]

x Decimal number between 1 and 2 for LPT, or between 1 and 4 for
COM .

Use The PRN command allows you to send output from Print Screen to a different printer
port. If no parameters are supplied, PRN displays the currently assigned printer port.

Example The following command causes Print Screen output to go to the COM1 port.

PRN com1
SoftICE Command Reference 193

SoftICE Commands
PROC Windows 9x, Windows NT/2000/XP System Information

Display summary information about any or all processes in the system.

Syntax For Windows 9x

PROC [-xo] [task]

For Windows NT/2000/XP

PROC [[-xom] process-type | thread-type]

-x Display extended information for each thread.

-o Display list of objects in processes handle table.

-m Display information about the memory usage of a process.

task Task name.

process-type Process handle, process ID, or process name.

thread-type Thread handle or thread ID.

 Use If you use the PROC command without any options, summary information is
presented for the process you specify or, if none is specified, for all processes in the
system. The information the memory option (-m) provides is also included when you
specify the extended option (-x) for Windows NT/2000/XP. The memory information
is provided for convenience, because the amount of extended information displayed is
quite large.

For all process and thread times, as well as process memory information, SoftICE uses
raw values from within the OS data structures without performing calculations to
convert them into standardized units.

The object option (-o) displays the object pointer, the object handle, and the object
type for every object in the processes object handle table. Because object information
is allocated from the system’s pageable pool, the object’s type name will not be
available if the page is not present. In this case, question marks (???) are displayed.
194 SoftICE Command Reference

SoftICE Commands
Output For Windows 9x

For each process the following summary information is provided:

Process Task name.

pProcess Pointer to process database (pdb).

Process ID The Ring 3 ID of the process.

Threads Number of threads the process owns.

Context Address context.

DefHeap Default heap.

DebuggeeCB Debuggee context block.

For Windows NT/2000/XP

For each process the following summary information is provided:

Process Process name.

KPEB Address of the Kernel Process Environment Block.

PID Process ID.

Threads Number of threads the process owns.

Priority Base priority of the process .

User Time Relative amount of time the process spent executing code at user level.

Krnl Time Relative amount of time the process spent executing code at the kernel
level.

Status Current status of the process:

• Running: The process is currently running.

• Ready: The process is in a ready to run state.

• Idle: The process is inactive.

• Swapped: The process is inactive, and its address space has been
deleted.

• Transition: The process is currently between states.

• Terminating: The process is terminating.
SoftICE Command Reference 195

SoftICE Commands
Example For Windows 9x

The following example lists all the processes in the system.

PROC

The following example shows extended information for GDIDEMO.

PROC -x gdidemo

Process Information for Gdidemo at 81569F04

Process pProcess ProcessID Threads Context DefHeap DebuggeeCB

Winword 8156ACA8 FFFC8817 00000001 C10474D4 00400000 00000000

Gdidemo 81569F04 FFFCBBBB 00000001 C1033E38 00410000 00000000

Loader32 8156630C FFFC47B3 00000001 C10476D0 00470000 00000000

Explorer 815614C0 FFFC307F 00000002 C104577C 00440000 00000000

Mprexe 8155DFA4 FFFFFB1B 00000002 C1043340 00510000 00000000

MSGSRV32 8155D018 FFFFF4A7 00000001 C1041E28 00400000 00000000

KERNEL32 8165A31C FFFCF87A3 00000004 C10D9EDC 00640000 00000000

Type: 00000005 RefCount: 00000002 Unknown1: 00000000

pEvent: 81569FC8 TermStatus: 00000103 Unknown2: 00000000

DefaultHeap: 00410000 MemContext: C1033E38

Flags: 00000000

pPSP: 0001A1A0 PSPSelector: 26E7 MTEIndex: 0019

Threads: 0001 ThrNotTerm: 0001 Unknown3: 00000000

R0threads: 0001 HeapHandle: 8155B000 K16TDB: 2816

MMFViews: 00000000 pEDB: 8156A448 pHandleTable: 8156A2C0

ParentPDB: 8156630C MODREFlist: 8156ABB0 Threadlist: 81569FE8

DebuggeeCB: 00000000 LHFreeHead: 00000000 InitialR0ID: 00000000

&crtLoadLock: 81569F64 pConsole: 00000000 Unknown4: C007757C

ProcDWORD0: 00003734 ProcGroup: 8156630C ParentMODREF: 8156ABB0

TopExFilter: 00000000 PriorityBase: 00000008 Heapownlist: 00650000

HHandleBlks: 0051000C Unknown5: 00000000 pConProvider: 00000000

wEnvSel: 19B7 wErrorMode: 0000 pEvtLdFinish 8156A2A0

UTState: 0000
196 SoftICE Command Reference

SoftICE Commands
Environment Database

The following example shows a partial listing of the objects in Kernel32.

PROC -o kernel32

Environment: 00520020 Unknown1: 00000000

CommandLine: 8156A500 C:\PROJECTS\GDIDEMO\Gdidemo.exe

CurrentDir: 8156A524 C:\PROJECTS\GDIDEMO

StartupInfo: 8156A53C hStdIn: FFFFFFFF hStdOut: FFFFFFFF

hStdError: FFFFFFFF Unknown2: 00000001 InheritCon 00000000

BreakType: 00000000 BreakSem: 00000000 BreakEvent: 00000000

BreakThreadId: 00000000 BrkHandlers: 00000000

Handle Object Type

1 8165A32C Process

2 8155BFFC Event

3 C103E3A4 Memory Mapped file

4 C0FFE0E0 Memory Mapped file

5 C0FFE22C Memory Mapped file

6 C0FF1058 Memory Mapped file

7 8155C01C Event

8 8155CCE4 Event

9 8155CD5C Event

A 8155CD8C Thread

B 8155D008 Event

C C1041C04 Memory Mapped file

D 8155D870 Event
SoftICE Command Reference 197

SoftICE Commands
For Windows NT/2000/XP

The following example uses the PROC command without parameters to list all the
processes in the system.

PROC

Note: The process that was active when SoftICE popped up will be highlighted. The
currently active process/address context within SoftICE will be indicated by an
asterisk (*).

Process KPEB PID Threads Pri User
Time

Krnl Time Status

System FD8E0020 2 14 8 00000000 00001A48 Ready

smss FD8B9020 13 6 B 00000022 00000022 Swapped

csrss FD8B3DC0 1F 12 D 00B416C5 00049C4E Ready

winlogon FD8AD020 19 2 D 00000028 00000072 Idle

services FD8A6880 28 B 9 0000018E 0000055A Idle

lsass FD8A4020 2A C 9 0000001B 00000058 Idle

spoolss FD87ACA0 43 6 8 000000AB 000000BD Idle

nddeagnt FD872780 4A 1 8 00000004 0000000C Idle

*ntvdm FD86DDC0 50 6 9 00125B98 0003C0BE Running

scm FD85B300 5D 3 8 00000024 0000008A Idle

Explorer FD850020 60 3 D 000002DE 00000447 Ready

Idle 8016A9E0 0 1 0 00000000 00135D03 Ready
198 SoftICE Command Reference

SoftICE Commands
The following example uses the extended option (-x) to display extended information
about a specific process, Explorer.

PROC -x explorer

Extended Process Information for Explorer(60)

KPEB: FD850020 PID: 60 Parent: Unknown(48)
Base Pri: D Mem Pri: 0 Quantum: 2
Usage Cnt: 1 Win Ver: 4.00 Err. Mode: 0
Status: Ready

Processor: 00000000 Affinity: 1
Page Directory: 011CA000 LDT Base: 00000000 LDT Limit: 0000

Kernel Time: 00000447 User Time: 000002DE
Create Time: 01BB10646E2DBE90
Exit Time: 0000000000000000

Vad Root: FD842E28 MRU Vad: FD842E28 Empty Vad: FD823D08
DebugPort: 00000000 ExceptPort: E118B040 SE token: E1240450
SpinLock: 00000000 HUPEB: 00000004 UPEB: 7FFDF000

ForkInProgress: FALSE Thread: 00000000(0)
Process Lock: 00000001 Owner: 00000000(0)
Copy Mem Lock: 00000000 Owner: 00000000(0)

Locked Pages: 00000000 ProtoPTEs: 000000DD Modified Pages: 000000E4
Private Pages: 0000014F Virt Size: 013F8000 Peak Virt Size: 01894000

 ---- Working Set Information ----

Update Time: 01BB11D0D7B299C0
Data: C0502000 Table: C0502470
Pages: 00000879 Faults: 00000899 Peak Size: 00000374
Size: 000002AF Minimum: 00000032 Maximum: 00000159

 ---- Non Pageable Pool Statistics ----

Quota Usage: 00000E78 Peak Usage: 00001238
Inherited Usage: 0000C093 Peak Usage: 00056555 Limit: 00080000

 ---- Pageable Pool Statistics ----

Quota Usage: 00003127 Peak Usage: 00004195
Inherited Usage: 0000C000 Peak Usage: 00004768 Limit: 000009CA

 ---- Pagefile Statistics ----

Quota Usage: 00000151 Peak Usage: 0000016E
Inherited Usage: FFFFFFFF Peak Usage: 00000151 Limit: 00000000

 ---- Handle Table Information ----

Handle Table: E10CE5E8 Handle Array: E1265D48 Entries: 50
SoftICE Command Reference 199

SoftICE Commands
QUERY Windows 9x, Windows NT/2000/XP System Information

Display the virtual address map of a process.

Syntax QUERY [[-x] address] | [process-type]

-x Shows the mapping for a specific linear address within every context
where it is valid.

address Linear address to query.

process-type Expression that can be interpreted as a process.

Use The QUERY command displays a map of the virtual address space for a single process,
or the mapping for a specific linear address. If no parameter is specified, QUERY
displays the map of the current process. If a process parameter is specified, QUERY
displays information about each address range in the process.

Output For Windows 9x

Under Windows 9x, the QUERY command displays the following information:

Base Pointer to the base address of the region of pages.

AllocBase Pointer to the base address of a range of pages allocated by the
VirtualAlloc function that contains the base address in the Base
column.

AllocProtect Access protection assigned when the region was initially allocated.

Size Size, in bytes, of the region starting at the base address in which all
pages have the same attributes.

State State of the pages in the region : Commit, Free, or Reserve.

• Commit — Committed pages for which physical storage was
allocated

• Free — Free pages not accessible to the calling process and
available to be allocated. AllocBase, AllocProtect, Protect, and
Owner are undefined.

• Reserve — Reserved pages. A range of the process’s virtual address
space is reserved, but physical storage is not allocated. Current
Access Protection (Protect) is undefined.

Protect Current Access protection.
200 SoftICE Command Reference

SoftICE Commands
Owner Owner of the region.

Context Address context.

For Windows NT/2000/XP

The QUERY command displays the following information:

Context Address context.

Address Range Start and end address of the linear range.

Flags Flags from the node structure.

MMCI Pointer to the memory management structure.

PTE Structure that contains the ProtoPTEs for the address range.

Name Additional information about the range. This includes the following:

• Memory mapped files will show the name of the mapped file.

• Executable modules will show the file name of the DLL or EXE.

• Stacks will be displayed as (thread ID).

• Thread information blocks will be displayed as TIB(thread ID).

• Any address that the WHAT command can identify may also
appear.
SoftICE Command Reference 201

SoftICE Commands
Example Windows 9x

The following example shows a partial listing of the output of the QUERY command
with no parameters. In this case, it displays the map for the current process,
GDIDEMO.

QUERY

The following example shows every context where base address 416000 is valid:

QUERY -x 416000

Base AllocBase AllocProt Size State Protect Owner

0 0 0 400000 Free NA

400000 400000 1 7000 Commit RO GDIDEMO

407000 400000 1 2000 Commit RW GDIDEMO

409000 400000 1 2000 Commit RO GDIDEMO

40B000 400000 1 5000 Reserve NA GDIDEMO

410000 410000 1 1000 Commit RW Heap 32

411000 410000 1 FF000 Reserve NA Heap 32

510000 410000 1 1000 Commit RW Heap 32

511000 410000 1 F000 Reserve NA Heap 32

520000 520000 4 1000 Commit RW

521000 520000 4 F000 Reserve NA

Base AllocBase AllocProt Size State Protect Owner Context

416000 400000 1 F1000 Reserve NA KERNEL32

416000 400000 1 E9000 Reserve NA Heap 32 MSGSRV32

416000 400000 1 D000 Commit RO EXPLORER Explorer

416000 410000 1 F9000 Reserve NA Heap 32 WINFILE

416000 400000 1 2000 Commit RO CONSOLE Console

416000 400000 1 E9000 Reserve NA Heap 32 WINOLDAP

416000 410000 0 EA000 Free NA Mprexe

416000 410000 1 FA000 Reserve NA Heap 32 Spool32
202 SoftICE Command Reference

SoftICE Commands
The following example shows a partial listing of the virtual address map for Explorer.

QUERY EXPLORER

Windows NT/2000/XP

The following example uses the QUERY command to map a specific linear address for
Windows NT/2000/XP.

QUERY 7f2d0123

Base AllocBase AllocProt Size State Protect Owner

0 0 0 400000 Free NA

400000 400000 1 23000 Commit RO EXPLORER

423000 400000 1 1000 Commit RW EXPLORER

424000 400000 1 11000 Commit RO EXPLORER

435000 400000 1 B000 Reserve NA EXPLORER

440000 440000 1 9000 Commit RW Heap32

449000 440000 1 F7000 Reserve NA Heap32

540000 440000 1 1000 Commit RW Heap32

541000 440000 1 F000 Reserve NA Heap32

550000 550000 4 1000 Commit RW

551000 550000 4 F000 Reserve NA

560000 560000 1 106000 Reserve NA

Context Address Range Flags MMCI PTE Name

csrss 7F2D0000-7F5CFFFF 06000000 FD8AC128 E1191068 Heap #07
SoftICE Command Reference 203

SoftICE Commands
The following example uses the QUERY command to list the address map of the
PROGMAN process for Windows NT/2000/XP.

QUERY progman

:query progman
Address Range Flags MMCI PTE Name

00010000-00010FFF C4000001

00020000-00020FFF C4000001

00030000-0012FFFF 84000004 STACK(6E)

00130000-00130FFF C4000001

00140000-0023FFFF 8400002D Heap #01

00240000-0024FFFF 04000000 FF0960C8 E1249948 Heap #02

00250000-00258FFF 01800000 FF0E8088 E11B9068 unicode.nls

00260000-0026DFFF 01800000 FF0E7F68 E11BBD88 locale.nls

00270000-002B0FFF 01800000 FF0E7C68 E11B6688 sortkey.nls

002C0000-002C0FFF 01800000 FF0E7AE8 E11BBA08 sorttbls.nls

002D0000-002DFFFF 04000000 FF09F3C8 E1249E88

002E0000-0035FFFF 84000001

00360000-00360FFF C4000001

00370000-0046FFFF 84000003 STACK(2E)

00470000-0047FFFF 04000000 FF0DF4E8 E124AAA8

00480000-00481FFF 01800000 FF0E7DE8 E110C6E8 ctype.nls

01A00000-01A30FFF 07300005 FF097AC8 E1246448 progman.exe

77DE0000-77DEFFFF 07300003 FF0FC008 E1108928 shell32.dll

77E20000-77E4BFFF 07300007 FF0FBA08 E1110A08 advapi32.dll

77E50000-77E54FFF 07300002 FF0FADC8 E1103EE8 rpcltc1.dll

77E60000-77E9BFFF 07300003 FF0FB728 E1110C48 rpcrt4.dll

77EA0000-77ED7FFF 07300003 FF0FCE08 E11048C8 user32.dll

77EE0000-77F12FFF 07300002 FF0FD868 E110F608 gdi32.dll

77F20000-77F73FFF 07300003 FF0EE1A8 E110C768 kernel32.dll

77F80000-77FCDFFF 07300005 FF0FDB48 E1101068 ntdll.dll

7F2D0000-7F5CFFFF 03400000 FF0E2C08 E11C3068 Heap #05

7F5F0000-7F7EFFFF 03400000 FF0E8EA8 E11B77E8

7FF70000-7FFAFFFF 84000001

7FFB0000-7FFD3FFF 01600000 FF116288 E1000188 Ansi Code Page

7FFDD000-7FFDDFFF C4000001 TIB(2E)

7FFDE000-7FFDEFFF C4000001 TIB(6E)

7FFDF000-7FFDFFFF C4000001 SubSystem Process
204 SoftICE Command Reference

SoftICE Commands
R Windows 3.1, Windows 9x, Windows NT/2000/XP Display/Change Memory

Display or change the register values.

Syntax For Windows 3.1

R [register-name [[=]value]]

For Windows 9x and Windows NT/2000/XP

R [-d | register-name | register-name [=] value]

register-name Any of the following: AL, AH, AX, EAX, BL, BH, BX, EBX, CL, CH,
CX, ECX, DL, DH, DX, EDX, DI, EDI, SI, ESI, BP, EBP, SP, ESP,
IP, EIP, FL, DS, ES, SS, CS FS, GS.

value If register-name is any name other than FL, the value is a hexadecimal
value or an expression. If register-name is FL, the value is a series of
one or more of the following flag symbols, each optionally preceded
by a plus or minus sign:

• O (Overflow flag)

• D (Direction flag)

• I (Interrupt flag)

• S (Sign flag)

• Z (Zero flag)

• A (Auxiliary carry flag)

• P (Parity flag)

• C (Carry flag)

-d Displays the registers in the Command window.

Use If no parameters are supplied, the cursor moves up to the Register window, and the
registers can be edited in place. If the Register window is not currently visible, it is
made visible. If register-name is supplied without a value, the cursor moves up to the
Register window positioned at the beginning of the appropriate register field.

If both register-name and value are supplied, the specified register’s contents are
changed to the value.
SoftICE Command Reference 205

SoftICE Commands
To change a flag value, use FL as the register-name, followed by the symbols of the flag
whose values you want to toggle. To turn a flag on, precede the flag symbol with a
plus sign. To turn a flag off, precede the flag symbol with a minus sign. If neither a
plus or negative sign is specified, the flag value will toggle from its current state. The
flags can be listed in any order.

Example The following example sets the AH register equal to 5.

R ah=5

The following example toggles the O, Z, and P flag values.

R fl=ozp

The following example moves the cursor into the Register window position under the
first flag field.

R fl

The following example toggles the O flag value, turns on the A flag value, and turns
off the C flag value.

R fl=o+a-c
206 SoftICE Command Reference

SoftICE Commands

RS Windows 3.1, Windows 9x, Windows NT/2000/XP Window Control

F4

Restore the program screen.

Syntax RS

Use The RS command allows you to restore the program screen temporarily.

This feature is useful when debugging programs that update the screen frequently. Use
the RS command to redisplay your program screen. To return to the SoftICE screen,
press any key.
SoftICE Command Reference 207

SoftICE Commands
S Windows 3.1, Windows 9x, Windows NT/2000/XP Miscellaneous

Search memory for data.

Syntax For Windows 3.1

S [address L length data-list]

For Windows 9x and Windows NT/2000/XP

S [-cu][address L length data-list]

address Starting address for search.

length Length in bytes.

data-list List of bytes or quoted strings separated by commas or spaces. A
quoted string can be enclosed with single or double quotes.

-c Make search case-insensitive.

-u Search for Unicode string.

Use Memory is searched for a series of bytes or characters that matches the data-list. The
search begins at the specified address and continues for the length specified. When a
match is found, the memory at that address is displayed in the Data window, and the
following message is displayed in the Command window.

PATTERN FOUND AT location

If the Data window is not visible, it is made visible.

To search for subsequent occurrences of the data-list, use the S command with no
parameters. The search will continue from the address where the data-list was last
found, until it finds another occurrence of data-list or the length is exhausted.

The S command ignores pages that are marked not present. This makes it possible to
search large areas of address space using the flat data selector (Windows 3.1/Windows
9x: 30h, Windows NT/2000/XP: 10h).

Example The following example searches for the string ’Hello’ followed by the bytes 12h and
34h starting at offset ES:DI+10 for a length of ECX bytes.

S es:di+10 L ecx ’Hello’,12,34

The following example searches the entire 4GB virtual address range for ’string’.

S 30:0 L ffffffff ’string’
208 SoftICE Command Reference

SoftICE Commands
SERIAL Windows 3.1, Windows 9x Customization

Redirect console to serial terminal.

Note: The SERIAL command is no longer supported (since DriverStudio 2.0). The SERIAL
commands functions are now provided through the NET command.

Syntax SERIAL [on | VT100 | [com-port] [baud-rate] | off]

VT100 Initiates VT100 serial mode.

com-port Number from 1 to 4 that corresponds to COM1, COM2, COM3 or
COM4. Default is COM1.

baud-rate Baud-rate to use for serial communications. The default is to have
SoftICE automatically determine the fastest possible baud-rate that
can be used. The rates are 1200, 2400, 4800, 9600, 19200, 23040,
28800, 38400, 57000, 115200.

Use Use the SERIAL command to establish a remote debugging session through a serial
port. Refer to DIAL on page 69 for information about how to establish remote sessions
over a modem, and to Chapter 9, “Using SoftICE with a Modem” in Using SoftICE for a
detailed explanation of this procedure.
SoftICE Command Reference 209

SoftICE Commands
Remote debugging requires a second IBM-compatible PC. The machine being
debugged is known as the local machine, and the machine where SoftICE is being
controlled remotely is known as the remote machine.To use the SERIAL command,
the remote and local machines must be connected with a null modem cable, with
wiring as shown in the following figure, attached through serial ports. Before using
the SERIAL command on the local machine, you must first run the SERIAL32.EXE or
SERIAL.EXE program on the remote machine. SERIAL32.EXE is a 32-bit client.
SERIAL.EXE is a real mode (MSDOS) client.

The syntax for the SERIAL32.EXE and SERIAL.EXE programs are the same as the
syntax of the SERIAL command, so the following information is applicable to all.

The SERIAL command has two optional parameters. The first parameter specifies the
com-port on the machine where the command is entered through which the
connection will be made. If no com-port is specified, com-port 1 (COM1) is chosen by
default. The second parameter specifies a baud-rate. If a baud-rate is specified, the
same baud-rate must be explicitly specified on both sides of the connection. If no
baud-rate is specified, SoftICE will attempt to determine the fastest baud-rate that can
be used over the connection without data loss. The process of arriving at the
maximum rate can take a few seconds, during which SoftICE prints the rates it is
checking. After the maximum rate is determined, SoftICE indicates the result.

Pins
2
3
4
5
6
7
8
20

Pins
2
3
4
5
6
7
8

20

25-Pin Null-Modem Configuration

Pins
2
3
5
7
8
6
1
4

Pins
2
3
5
7
8
6
1
4

9-Pin Null-Modem Configuration
210 SoftICE Command Reference

SoftICE Commands
Ctrl D is always the pop-up hot key sequence on the remote machine. SoftICE can also
be popped up from the local machine with the local machine’s pop-up hot key
sequence (which may have been set via the ALTKEY command).

If the remote machine has a monochrome display, the COLOR command can be used
to make SoftICE’s output more readable.

If for any reason data is lost over the connection and SoftICE output on the remote
machine becomes corrupted, Shift \ (backslash) can be typed on the remote machine
to force a repaint of the SoftICE screen.

Specifying SERIAL OFF will end the remote debugging session and SoftICE will resume
using the local machine for I/O. SERIAL with no parameters will display the current
serial state and the com-port and baud-rate being used if SERIAL is ON.

Using Ctrl-Z will exit the SERIAL.EXE program on the remote machine after a remote
debugging session is complete.

If you place the SERIAL command in the SoftICE initialization string setting,
SERIAL.EXE must be running on the remote machine before SoftICE is started on the
local machine.

For Windows 3.1

Prior to using the SERIAL command, you must place the COMn keyword on a separate
line in the WINICE.DAT file to reserve a specific COM port for the serial connection.
The n is a number between 1 and 4 representing the COM port. If this statement is not
present in WINICE.DAT, SoftICE cannot be popped up from the remote machine. For
example, the following keyword sets Com 2 as the serial post.

Com2

For Windows 9x

Select the desired com port in the remote debugging initialization settings within
Symbol Loader.

Example The following example shows how to run the SERIAL.EXE program on the remote
machine:

SERIAL.EXE on 19200

The following example shows how to execute a SERIAL command on the local
machine that corresponds to the SERIAL.EXE command given in the previous
example.
SoftICE Command Reference 211

SoftICE Commands
SERIAL on 2 19200

When the first command is executed, the remote machine will be prepared to receive
a connection request from the local machine on its first com-port at 19200bps. The
second command establishes a connection between the two machines through the
local machine’s second com-port. Since the first command explicitly specified a baud
rate, the SERIAL command on the local machine must explicitly specify the same
baud rate of 19200bps.

Once the connection is established, the remote machine will serve as the SoftICE
interface for debugging the local machine until SERIAL off is entered on the remote
machine.

See Also Chapter 9, “Using SoftICE with a Modem” in the manual Using SoftICE.
212 SoftICE Command Reference

SoftICE Commands
SET Windows 9x, Windows NT/2000/XP Mode Control

Display or change the state of an internal variable.

Syntax SET [keyword] [on | off] [value]

keyword Specifies option to be set.

on, off Enables or disables the option.

value Value to be assigned to the option.

Use Use the SET command to display or change the state of internal SoftICE variables.

If you specify SET with a keyword, ON or OFF enables or disables that option. If you
specify SET with a keyword and value, it assigns the value to the keyword. If SET is
followed by a keyword with no additional parameters, it displays the state of the
keyword.

Using SET without parameters displays the state of all keywords.

SET supports the following keywords:

ALTSCR [on|off]

BUTTONREVERSE [on|off]

CASESENSITIVE [on|off]

CENTER [on|off]

CODE [on|off]

EXCLUDE [on|off]

FAULTS [on|off]

FLASH [on|off]

FONT [1|2|3]

FORCEPALETTE [on|off]

I1HERE [on|off]

I3HERE [on|off]

LOWERCASE [on|off]

MAXIMIZE [on|off]

MONITOR [1| 2 | 3 | n] (Windows 2000/XP only)
SoftICE Command Reference 213

SoftICE Commands
SET BUTTONREVERSE ON reverses the meaning of the left and right mouse buttons.

SET CASESENSITIVE ON makes global and local symbol names case sensitive. Enter
them exactly as displayed by the SYM command.

SET CENTER ON centers the SoftICE window. When you manually move the window,
SoftICE turns centering off.

SET FORCEPALETTE ON prevents the system colors (palette indices 0-7 and 248-255)
from being changed in 8-bits per pixel mode. This ensures that the SoftICE display can
always be seen. This is OFF by default.

SET MAXIMIZE ON sizes the UVD window as large as possible. This setting overrides
LINES and WIDTH but not FONT. When you can change the LINES or WIDTH
settings, SoftICE changes them only temporarily. The next time SoftICE pops up, it
displays the window at maximum size.

On Windows 2000/XP only, SET MONITOR changes the monitor used to display
SoftICE. Enter the decimal value representing the monitor you want to use to display
SoftICE. Issuing the SET MONITOR command without parameters lists the monitors
available to SoftICE. If you do not want SoftICE to patch in a specific video driver, add
the base name of the DDI driver to the NTICE\ExcludedDisplayDrivers key in the
registry. This list is delimited by semi-colons, “ ; “.

SET MOUSE ON enables mouse support and SET MOUSE OFF disables it. To adjust the
speed at which the mouse moves, use one of the following: 1 (slowest speed); 2
(intermediate speed–this is the mouse default.); 3 (fastest speed).

SET SYMBOLS ON instructs the disassembler to show the symbol names in
disassembled code. SET SYMBOLS OFF instructs the disassembler to show numbers
(for example, offsets and addresses). This command applies to both local and global
symbol names.

SET WHEELLINES sets the number of lines that should be scrolled for each wheel
movement when using an Intellipoint mouse.

MOUSE [on|off] [1|2|3]

ORIGIN x y (window location in pixel coordinates)

PAUSE [on|off]

SYMBOLS [on|off]

TABS [on|off] [1|2|3|4|5|6|7|8]

THREADP [on|off]

VERBOSE [on|off]

WHEELLINES n
214 SoftICE Command Reference

SoftICE Commands
Example The following example enables SoftICE fault trapping:

SET faults on

The following example sets the mouse to the fastest speed:

SET mouse 3

See Also ALTSCR, CODE, FAULTS, FLASH, I1HERE, I3HERE, THREADP
SoftICE Command Reference 215

SoftICE Commands
SHOW Windows 3.1, Windows 9x Symbol/Source

Ctrl-F11

Display instructions from the back trace history buffer.

Syntax SHOW [B | start] [l length]

B Display instructions beginning with the oldest instruction.

start Hexadecimal number specifying the index within the back trace
history buffer to start disassembling from. An index of 1 corresponds
to the newest instruction in the buffer.

length Number of instructions to display.

Use Use the SHOW command to display instructions from the back trace history buffer. If
source is available for the instructions, the display is in mixed mode; otherwise, only
code is displayed.

You can use the SHOW command only if the back trace history buffer contains
instructions. To fill the back trace history buffer, use the BPR command with either the
T or TW parameter to specify a range breakpoint.

The SHOW command displays all instructions and source in the Command window.
Each instruction is preceded by its index within the back trace history buffer. The
instruction whose index is 1 is the newest instruction in the buffer. Once SHOW is
entered, you can use the Up and Down Arrow keys to scroll through the contents of
the back trace history buffer. To exit from SHOW, press the Esc key.

SHOW with no parameters or SHOW B will begin displaying from the back trace
history buffer starting with the oldest instruction in the buffer. SHOW followed by a
start number begins displaying instructions starting at the specified index within the
back trace history buffer.

Example The following example starts displaying instructions in the Command window,
starting at the oldest instruction in the back trace history buffer.

SHOW B

See Also BPR
216 SoftICE Command Reference

SoftICE Commands

SRC Windows 3.1, Windows 9x, Windows NT/2000/XP Symbol/Source

F3

Cycle among source, code, and mixed displays in the Code window.

Syntax SRC

Use Use the SRC command to cycle among the following modes in the Code window:
source mode, code mode, and mixed mode.

Hint: Use F3 to cycle modes quickly.

Example The following example changes the current mode of the Code window.

SRC
SoftICE Command Reference 217

SoftICE Commands
SS Windows 3.1, Windows 9x, Windows NT/2000/XP Symbol/Source

Search the current source file for a string.

Syntax SS [line-number] [’string’]

line-number Decimal number.

string Character string surrounded by quotes.

Use The SS command searches the current source file for the specified character string. If
there is a match, the line that contains the string is displayed as the top line in the
Code window.

The search starts at the specified line-number. If no line-number is specified, the
search starts at the top line displayed in the Code window.

If no parameters are specified, the search continues for the previously specified string.

The Code window must be visible and in source mode before using the SS command.
To make the Code window visible, use the WC command. To make the Code window
display source, use the SRC command.

Example In the following example, the current source file is searched starting at line 1 for the
string ’if (i==3)’. The line containing the next occurrence of the string becomes the top
line displayed in the Code window.

SS 1 ’if (i==3)’
218 SoftICE Command Reference

SoftICE Commands
STACK Windows 9x, Windows NT/2000/XP System Information

Display a call stack.

Syntax For Windows 3.1 and Windows 9x

STACK [-v | -r] [task-name | SS:[E]BP]

-v Verbose. Displays local variables in 32-bit code.

-r Ring transition. Walks through ring transitions in 32-bit code.

task-name Name of the task as displayed by the TASK command.

SS:[E]BP SS:[E]BP of a valid stack frame.

For Windows NT/2000/XP

STACK [-v | -r] [thread-type | stack frame]

thread-type Thread handle or thread ID.

stack frame Value that is not a thread-type is interpreted as a stack frame.

Use Use the STACK command to display the call stacks for DOS programs, Windows tasks,
and 32-bit code.

If you enter STACK with no parameters, the current SS:[E]BP is used as a base for the
stack frame displayed. You can explicitly specify a stack base with a task-name or base
address, and under Windows NT/2000/XP, with a thread identifier.

If you are using STACK to display the stack of a Windows task that is not the current
one, specify either its task-name or a valid SS:[E]BP stack frame. You can use the
TASK command to obtain a list of running tasks. However, you should avoid using
the STACK command with the current task of the TASK command’s output (marked
with an '*'), because the task’s last known SS:[E]BP is no longer valid.

The STACK command walks the stack starting at the base by traversing x86 stack
frames. If an invalid stack frame or address that has been paged out is encountered
during the walk, the traversal will stop. In 32-bit code, the -r (ring transition) switch
tells SoftICE to continue walking the stack through ring transitions. The SoftICE stack
walking algorithm can use FPO (frame pointer omission) data to walk call stacks. The
FPO data is a type of debug information that is embedded in a .NMS file during the
translation step. The FPO data is module/symbol table specific. Therefore, when using
the STACK command, it will be helpful to have symbol tables for all modules that are
listed on the stack. If SoftICE does not have FPO data, it is limited to walking EBP
frames only.
SoftICE Command Reference 219

SoftICE Commands
The address of the call instruction at each frame is displayed along with the name of
the routine it is in, if the routine is found in any loaded symbol table. If the routine is
not in the symbol table, the export list and module name list are searched for nearby
symbols.

In 32-bit code, the STACK command output includes the frame pointer, the return
address, and the instruction pointer for each frame. If you set the -v switch, SoftICE
also displays the local variables for each frame. For each frame in the call stack, both
the nearest symbol to the call instruction, and the actual address, are displayed. If
there is no symbol available, the module name and object/section name are displayed
instead.

The 32-bit call stack support is not limited to applications; it will also work for VxDs
and Windows NT/2000/XP device driver code at ring 0. Since many VxDs are written
in assembly language, there may not be a valid call stack to walk from a VxD-stack
base address.

For Windows 3.1 and Windows 9x, the call stack is not followed through thunks or
ring transitions, but under Windows NT/2000/XP it is when you set the -r switch.

For Windows 3.1 and Windows 9x

If you want SoftICE to pop up when a non-active task is restarted, you can use the
STACK command with the task as a parameter to find the address on which to set an
execution breakpoint. To do this, enter STACK followed by the task-name. The bottom
line of the call stack will show an address preceded by the word ’at’. This is the address
of the CALL instruction the program made to Windows that has not yet returned. You
must set an execution breakpoint at the address following this call.

You can also use this technique to stop at other routines higher on the call stack. This
is useful when you do not want to single step through library code until execution
resumes in your program’s code.
220 SoftICE Command Reference

SoftICE Commands
Example The following example shows the output from the STACK -r command when sitting at
a breakpoint in the Driver::Works PCIENUM sample. Using the -r parameter results in
the STACK command walking past the ring transition in _KiSystemService. The output
is organized into three columns. Column one is the frame pointer. Column two is the
return address. Column three is the instruction pointer.

stack -r

FC070DE8 F74FC919 KIrp::KIrp+0007
FC070E04 F74FC796 KDevice::DeviceIrpDispatch+003C
FC070E18 801FE4F8 KDriver::DriverIrpDispatch+0026
FC070E30 8016EBF8 @IofCallDriver+0037
FC070E48 8016CDF7 _IopSynchronousServiceTail+006A
FC070ED8 8013DC14 _NtReadFile+0683
FC070F04 77F67E87 _KiSystemService+00C4
0012FE04 77F0D300 ntdll!.text+6E87
0012FE6C 100011A0 _ReadFile+01A6
0012FEDC 00401057 PCIDLL!.text+01A0
0012FF80 004017C9 PCIEXE!.text+0057
0012FFC0 77F1BA3C PCIEXE!.text+07C9
0012FFF0 00000000 _BaseProcessStart+0040

The following example shows the same stack as the previous example, but displayed
with the STACK -V -R command. The -v switch causes the local variables for each
frame to be displayed.

stack -v -r

F74AFDE8 F74FC919 KIrp::KIrp+0007
 [EBP-4] + const class KIrp * this = 0xF74AFDF4 <{...}>
 [EBP+8] +struct _IRP * pIrp = 0x84C460E8 <{...}>
F74AFE04 F74FC796 KDevice::DeviceIrpDispatch+003C
 [EBP-C] + const class KDevice * this = 0x807DC7A8 <{...}>
 [EBP-4] unsigned long Major = 0x3
 [EBP+8] +struct _IRP * pIrp = 0x84C460E8 <{...}>
F74AFE18 801FE4F8 KDriver::DriverIrpDispatch+0026
 [EBP+8] +struct _DEVICE_OBJECT * pSysDev = 0x807DB850 <{...}>
 [EBP+C] +struct _IRP * pIrp = 0x84C460E8 <{...}>
F74AFE30 8016EBF8 @IofCallDriver+0037
F74AFE48 8016CDF7 _IopSynchronousServiceTail+006A
F74AFED8 8013DC14 _NtReadFile+0683
F74AFF04 77F67E87 _KiSystemService+00C4
0012FE04 77F0D300 ntdll!.text+6E87
0012FE6C 100011A0 _ReadFile+01A6
0012FEDC 00401057 PCIDLL!.text+01A0
0012FF80 004017C9 PCIEXE!.text+0057
0012FFC0 77F1BA3C PCIEXE!.text+07C9
0012FFF0 00000000 _BaseProcessStart+0040
SoftICE Command Reference 221

SoftICE Commands
The following example shows the output of the STACK command in 16-bit mode. The
command has been issued without any parameters, after a breakpoint is set in the
message handler of a Windows program.

STACK

__astart at 0935:1021 [?]

WinMain at 0935:0d76 [00750]

[BP+000C]hInstance 0935

[BP+000A]hPrev 0000

[BP+0006]lpszCmdLine

[BP+0004]CmdShow

[BP-0002]width 00DD

[BP-0004]hWnd 00E5

USER!SENDMESSAGE+004F at 05CD:06A7

USER(01) at 0595:04A0 [?] 0595:048b

USER(06) at 05BD:1A83 [?]

=>ClockWndProc at 0935:006F [0179]

[BP+000E]hWnd 1954

[BP+000C]message 0024

[BP+000A]wParam 0000

[BP+0006]lParam 06ED:07A4

[BP-0022]ps 0000

Each entry of the call stack in the 16-bit format contains the following information:

• Symbol name or module name in which the return address falls

• SS:[E]BP value of this entry

• Call instruction’s source line number if available

• Address of the first line of this routine or the name of the routine that was called
to reach this routine

If stack variables are available for this entry, the following information about each is
displayed:

• SS:[E]BP relative offset

• Stack variable name

• Data in the stack variable if it is of type char, int, or long
222 SoftICE Command Reference

SoftICE Commands
SYM Windows 3.1, Windows 9x, Windows NT/2000/XP Symbol/Source

Display or set symbol.

Syntax SYM [[section-name] !] symbol-name [value]]

section-name A valid section-name or a partial section-name. You can use this
parameter to display symbols in a particular section. If a section-name
is specified, it must be followed by an exclamation point (!). For
example, you could use the command SYM .TEXT! to display all
symbols in the .TEXT section of the executable.

! If “!” is the only parameter specified, the modules in this symbol table
are listed.

symbol-name A valid symbol-name. The symbol-name can end with an asterisk (*).
This allows searching if only the first part of the symbol-name is
known. The comma “,” character can be used as a wildcard character
in place of any character in the symbol-name.

value The specific address to which the symbol is to be set.Value that is used
to set a symbol to a specific address.

Use Use the SYM command to display and set symbol addresses. If you enter SYM without
parameters, all symbols display. The address of each symbol displays next to the
symbol-name.

If you specify a symbol-name without a value, the symbol-name and its address
display. If the symbol-name is not found, nothing displays.

If you specify a section name followed by an exclamation point (!) and then a symbol
name or asterisk (*), SYM displays only symbols from the specified section.

The SYM command is often useful for finding a symbol when you can only remember
a portion of the name. Two wildcard methods are available for locating symbols. If
you specify a symbol-name ending with an asterisk (*), SYM displays all symbols that
match the actual characters typed prior to the asterisk, regardless of their ending
characters. If you use a comma (,) in place of a specific character in a symbol name,
that character is a wild-card character.

If you specify a value, the address of all symbols that match symbol-name are set to
the value.

If you place an address between square brackets as a parameter to the SYM command,
SYM displays the closest symbol above and below the address.
SoftICE Command Reference 223

SoftICE Commands
Example The following example displays all symbols that start with FOO display.

SYM foo*

The following example sets all symbols that start with FOO to the address 6000.

SYM foo* 6000

The following example displays all sections for the current symbol table.

SYM !

The following example displays all symbols in section MAIN that start with FOO.

SYM main!foo*
224 SoftICE Command Reference

SoftICE Commands
SYMLOC Windows 3.1, Windows 9x, Windows NT/2000/XP Symbol/Source

Relocate the symbol base.

Syntax For Windows 3.1

SYMLOC [segment-address | o | r |
(section-number selector linear-address)]

For Windows 9x and Windows NT/2000/XP

SYMLOC [segment-address | o | r | -c process-type |
(section-number selector linear-address)]

segment address Use only use to relocate MS-DOS programs.

o For 16-bit Windows table only. Changes all selector values back to
their ordinal state.

r For 16-bit Windows table only. Changes all segment ordinals to their
appropriate selector value.

-c Specify a context value for a symbol table. Use when debugging DOS
extended applications.

section-number For 32-bit tables only. PE file 1 based section-number.

selector For 32-bit tables only. Protected mode selector.

linear-address For 32-bit tables only. Base address of the section.

Use The SYMLOC command handles symbol fixups in a loaded symbol table. The
command contains support for DOS tables, 16-bit protected mode Windows tables
(using O and R commands only), and 32-bit protected mode tables. The 32-bit support
is intended for 32-bit code that must be manually fixed up such as DOS 32-bit
extender applications.

In an MS-DOS program, SYMLOC relocates the segment components of all symbols
relative to the specified segment-address. This function is necessary when debugging
loadable device drivers or other programs that cannot be loaded directly with the
SoftICE Loader.

When relocating for a loadable device driver, use the value of the base address of the
driver as found in the MAP command. When relocating for an .EXE program, the
value is 10h greater than that found as the base in the MAP command. When
relocating for a .COM program, use the base segment address that is found in the MAP
command.
SoftICE Command Reference 225

SoftICE Commands
The MAP command displays at least two entries for each program. The first is typically
the environment and the second is typically the program. The base address of the
program is the relocation value.

For Windows 9x and Windows NT/2000/XP

The SYMLOC -C option allows you to associate a specific address context with the
current symbol table. This option is useful for debugging an extender application
under Windows NT/2000/XP where SoftICE would not be able to assign a context to
the symbol table automatically.

Example The following example relocates all segments in the symbol table relative to 1244. The
+10 relocates a TSR that was originally an .EXE file. If it is a .COM file or a DOS
loadable device driver, the +10 is not necessary.

SYMLOC 1244+10

The following example relocates all symbols in section 1 of the table to 401000h using
selector 1Bh. Each section of the 32-bit table must be relocated separately.

SYMLOC 1 1b 401000

The following example sets the context of the current symbol table to the process
whose process ID is 47. Subsequently, when symbols are used, SoftICE will
automatically switch to that process.

SYMLOC -c 47
226 SoftICE Command Reference

SoftICE Commands
T Windows 3.1, Windows 9x, Windows NT/2000/XP Flow Control

F8

Trace one instruction.

Syntax T [=start-address] [count]

start-address Address at which to begin execution.

count Specify how many times SoftICE should single step before stopping.

Use The T command uses the single step flag to single step one instruction.

Execution begins at the current CS:EIP, unless you specify the start-address parameter.
If you specify this parameter, CS:EIP is changed to start-address prior to single
stepping.

If you specify count, SoftICE single steps count times. Use the Esc key to terminate
stepping with a count.

If the Register window is visible when SoftICE pops up, all registers that were altered
since the T command was issued are displayed with the bold video attribute.

If the Code window is in source mode, this command single steps to the next source
statement.

Example The following example single-steps through eight instructions starting at memory
location CS:1112.

T = cs:1112 8
SoftICE Command Reference 227

SoftICE Commands
TABLE Windows 3.1, Windows 9x, Windows NT/2000/XP Symbol/Source

Change or display the current symbol table.

Syntax For Windows 3.1

TABLE [[r] partial-table-name] | autoon | autooff | $

For Windows 9x and Windows NT/2000/XP

TABLE [partial-table-name] | autoon | autooff | $

r Removes the table specified by partial-table-name.

partial-table-name Symbol table name or enough of the first few characters to define a
unique name.

autoon Key word that turns auto table switching on.

autooff Key word that turns auto table switching off.

$ Specify $ to switch to the table where the current instruction pointer is
located.

Use If you do not specify any parameters, all the currently loaded symbol tables are
displayed with the current symbol table highlighted. If you specify a partial-table-
name, that table becomes the current symbol table.

Use the TABLE command when you have multiple symbol tables loaded. SoftICE
supports symbol tables for 16- and 32-bit Windows applications and DLLs, 32-bit
Windows VxDs, Windows NT/2000/XP device drivers, DOS programs, DOS loadable
device drivers, and TSRs.

Symbols are only accessible from one symbol table at time. You must use the TABLE
command to switch to a symbol table before using symbols from that table.

If you use the AUTOON keyword, SoftICE will switch to auto table switching mode. In
this mode, SoftICE changes the current table to the table the instruction pointer is in
when SoftICE pops up. AUTOOFF turns off this mode.

Tables are not automatically removed when your program exits. If you reload your
program with the SoftICE Loader, the symbol table corresponding to the loaded
program is replaced with the new one.

For Windows 3.1

If the R parameter precedes a partial-table-name, the specified table is removed.
Specifying an asterisk (*) after the R parameter removes all symbol tables.
228 SoftICE Command Reference

SoftICE Commands
For Windows 9x and Windows NT/2000/XP

Symbol tables can be tied to a single address context or multiple address contexts. If a
table is tied to a single context, switching to that table using the TABLE command
switches to the appropriate address context. If you use any symbol from a context-
sensitive table, SoftICE switches to that context. Use “View Symbol Tables” in the
SoftICE Loader to remove tables from memory. The R parameter is not supported.

Example In the following example, the TABLE command, used without parameters, lists all
loaded symbol tables. In the sample output, GENERIC is highlighted because it is the
current table. The amount of available symbol table memory is displayed at the
bottom.

TABLE
 MYTSR.EXE
 MYAPP.EXE
 MYVXD
 GENERIC
 006412 bytes of symbol table memory available

In the following example, the current table is changed to MYTSR.EXE. Notice that
only enough characters to identify a unique table were entered.

TABLE myt
SoftICE Command Reference 229

SoftICE Commands
TABS Windows 3.1, Windows 9x, Windows NT/2000/XP Customization

Display or set the tab settings for source display.

Syntax TABS [tab-setting]

tab-setting Number from 1 through 8 that specifies the number of columns
between each tab stop in the source display.

Use Use the TABS command to display or set tab-settings for the display of source files. Tab
stops can be anywhere from 1 to 8 columns. The default TABS setting is 8. Using the
TABS command without any parameters displays the current tab-setting. Specifying a
tab-setting of 1 allows the most source to be viewed since each tab will be replaced by
a single space.

Example The following example causes the tabs setting to change to every fourth column
starting at the first display column.

TABS 4
230 SoftICE Command Reference

SoftICE Commands
TASK Windows 3.1, Windows 9x, Windows NT/2000/XP System Information

Display the Windows task list.

Syntax TASK

Use The TASK command displays information about all tasks that are currently running.
The task that has focus is displayed with an asterisk after its name. This command is
useful when a general protection fault occurs because it indicates which program
caused the fault.

For Windows NT/2000/XP

The TASK command is process specific and only shows 16-bit tasks under Windows
NT/2000/XP. In addition, it is only useful when the current context is that of an
NTVDM process containing a WOW box. To view information on other processes,
refer to PROC on page 194.

Output For each running task, the following information displays:

Task Name Name of the task.

SS:SP Stack address of the task when it last relinquished control.

StackTop Top of stack offset.

StackBot Bottom of stack offset.

StackLow Lowest value that SP has ever had when there was a context-switch
away from the task.

TaskDB Selector for the task data base segment.

hQueue Queue handle for the task. This is just the selector for the queue.

Events Number of outstanding events in the queue.

For Windows 3.1 and Windows 9x

The TASK command works for 16- and 32-bit tasks, however, the following fields
change for 32-bit tasks:

StackBot Highest legal address of the stack shown as a 32-bit flat offset.

StackTop Lowest legal address of the stack shown as a 32-bit flat offset.
SoftICE Command Reference 231

SoftICE Commands
StackLow Field is not used.

SS:SP Contains the 16-bit selector offset address of the stack. If you examine
the base address of the 16-bit selector, you see that this points to the
same memory as does the flat 32-bit pointer used with the 32-bit data
selector.

Example The following example shows the use of the TASK command on Windows 3.1 running
Win32s, and its output.

TASK

TaskNm SS:SP StackTop StackBot Low TaskDB hQueue Events

FREECELL 21BF:7D96 86CE0000 86D00000 10FF 121F 0000

PROGMAN 17A7:200A 0936 2070 14CE 064F 07D7 0000

CLOCK 1427:1916 02E4 1A4E 143E 144F 1437 0000

MSWORD * 29AF:913E 5956 93A4 7ADE 1F67 1F47 0000
232 SoftICE Command Reference

SoftICE Commands
THREAD Windows 9x System Information

Display information about a thread.

Syntax THREAD [TCB | ID | task-name]

TCB Thread Control Block.

ID Thread ID number.

task-name Name of a currently running 32-bit process.

Use Use the THREAD command to obtain information about a thread.

• If you do not specify any options or parameters, the THREAD command displays
information for every active thread in the system.

For Windows NT/
2000/XP, refer to
THREAD on page
235.

• If you specify a task-name as a parameter, all active threads for that process
display.

• If you specify a TCB or ID, only information for that thread displays.

Output For each thread, the following information is shown:

Ring0TCB Address of the Ring-0 thread control block. This is the address that is
passed to VxDs for thread creation and termination.

ID VMM Thread ID.

Context Context handle associated with the process of the thread.

Ring3TCB Address of the KERNEL32 Ring-3 thread control block.

Thread ID Ring-3 thread ID.

Process Address of the KERNEL32 process database that owns the thread.

TaskDB Selector of the task database that owns the thread.

PDB Selector of the program database (protected-mode PSP).

SZ Size of the thread which can be either 16 or 32 bit.

Owner Process name of the owner.
SoftICE Command Reference 233

SoftICE Commands
If you specify TCB or ID, the following information displays for the thread with the
specified TCB or ID:

• Current register contents for the thread.

• All thread local storage offsets within the thread. This shows the offset in the
thread control block of the VMM TLS entry, the contents of the TLS entry, and the
owner of the TLS entry.

Example The following example displays the thread that belongs to the Winword process.

THREAD

The following example shows a partial listing of the information returned about the
thread with ID 8B.

THREAD 8B

See Also For Windows NT/2000/XP, refer to THREAD on page 235;
WT.

Ring0TCB ID Context Ring3TCB ThreadID Process TaskDB PDB SZ Owner

C1051808 008B C104B990 815842CC FFF0671F 8158AAA8 274E 25B7 32 *Winword

Ring0TCB ID Context Ring3TCB ThreadID Process TaskDB PDB SZ Owner

C1051808 008B C104B990 815842CC FFF0671F 8158AAA8 274E 25B7 32 *Winword

CS:EIP=0137:BFF96868 SS:ESP=013F:0062FC3C DS=013F ES=013F FS=2EBF GS=0000

EAX=002A002E EBX=815805B8 ECX=815842CC EDX=815805B8 I S P

ESI=00000000 EDI=815805B8 EBP=0062FC80 ECODE=00000000

TLS Offset 007C = 00000000 VPICD

TLS Offset 0080 = 00000000 DOSMGR

TLS Offset 0084 = 00000000 SHELL

TLS Offset 0088 = C1053434 VMCPD

TLS Offset 008C = C104EA74 VWIN32

TLS Offset 0090 = 00000000 VFAT

TLS Offset 0094 = 00000000 IFSMgr
234 SoftICE Command Reference

SoftICE Commands
THREAD Windows NT/2000/XP System Information

Display information about a thread.

Syntax THREAD [-r | -x | -u | -w] [thread-type | process-type]

-r Display value of the thread’s registers.

-x Display extended information for each thread.

-u Display threads with user-level components.

-w Display a list of the objects that the thread is waiting on.

thread-type Thread handle or thread ID.

process-type Process-handle, process-id or process-name.

Use Use the THREAD command to obtain information about a thread.

• If you do not specify any options or parameters, the THREAD command displays
information for every active thread in the system.

For Windows 9x,
refer to THREAD
on page 233.

• If you specify a process-type as a parameter, all the active threads for that process
display.

• If you specify a thread-type, only information for that thread displays.

For the -R and -X options, the registers shown are those that are saved on the thread
context switches: ESI, EDI, EBX and EBP.

Output For each thread, the following summary information is displayed:

TID Thread ID.

Krnl TEB Kernel Thread Environment Block.

StackBtm Address of the bottom of the thread’s stack.

StackTop Address of the start of the thread’s stack.

StackPtr Threads current stack pointer value.

User TEB User thread environment block.

Process(Id) Owner process-name and process-id.
SoftICE Command Reference 235

SoftICE Commands
When you specify extended output (-x), THREAD displays many fields of information
about thread environment blocks. Most of these fields are self-explanatory, but the
following are particularly useful and deserve to be highlighted:

TID Thread ID.

KTEB Kernel Thread Environment Block.

Base Pri, Dyn. Pri Threads base priority and current priority.

Mode Indicates whether the thread is executing in user or kernel mode.

Switches Number of context switches made by the thread.

Affinity Processor affinity mask of the thread. Bit positions that are set
represent processors on which the thread is allowed to execute.

Restart Address at which the thread will start executing when it is resumed.

The thread’s stack trace is displayed last.

Example The following example uses the THREAD command to display the threads that belong
to the Explorer process:

THREAD explorer

TID Krnl TEB StackBtm StkTop StackPtr User TEB Process(Id)

006A FD857DA0 FB1CB000 FB1CD000 FB1CCED8 7FFDE000 Explorer(6B)

006F FD854620 FB235000 FB237000 FB236B2C 7FFDD000 Explorer(6B)

007C FD840020 FD72F000 FD731000 FD730E24 7FFDB000 Explorer(6B)
236 SoftICE Command Reference

SoftICE Commands
The following example displays extended information on the thread with ID 5Fh:

THREAD -x 5f
 Extended Thread Info for thread 5F
 KTEB: FD850D80 TID: 05F Process: Explorer(60)

 Base Pri: D Dyn. Pri: E Quantum: 2

 Mode: User Suspended: 0 Switches: 00024B4F

 TickCount: 00EE8DA4 Wait Irql: 0

 Status: User Wait for WrEventPair

 Start EIP: KERNEL32!LeaveCriticalSection+0058 (6060744C)

 Affinity: 00000001 Context Flags: A

 KSS EBP: FB1C3F04 Callback ESP: 00000000

 Kernel Stack: FB1C2000 - FB1C4000 Stack Ptr: FB1C3ED8

 User Stack: 00030000 - 00130000 Stack Ptr: 0012FE3C

 Kernel Time: 0000014A User Time: 0000015F

 Create Time: 01BB10646E2DBE90

 SpinLock: 00000000 Service Table: 80174A40 Queue: 00000000

 SE Token: 00000000 SE Acc. Flags: 001F03FF

 UTEB: 7FFDE000 Except Frame: 0012FEB4 Last Err: 00000006

 Registers: ESI=FD850D80 EDI=0012FEC4 EBX=77F6BA0C

EBP=FB1C3F04

 Restart : EIP=80168757 a.k.a. _KiSetServerWaitClientEvent+01CF

Explorer!.text+975D at 001B:0100A75D

Explorer!.text+9945 at 001B:0100A945

Explorer!.text+A3F8 at 001B:0100B3F8

USER32!WaitMessage+004F at 001B:60A0CA4B

user32!.text+070A at 001B:60A0170A

=> ntdll!CsrClientSendMessage+0072 at 001B:77F6BA0C

See Also For Windows 9x, refer to THREAD on page 233;
WT.
SoftICE Command Reference 237

SoftICE Commands
TIMER Windows NT/2000/XP System Information

Display information about timer objects.

Syntax TIMER [timer-address]

timer-address Location of a timer object.

Use Displays the system timer objects or the contents of a specific timer object.

Example The following example shows a portion of the output of the TIMER command when it
is issued with no parameters

TIMER

Timer DPC DPC Remaining
Object Address Context Time Signaled Period Symbol
80706588 10.233s FALSE
80681C48 10.233s FALSE
8074E108 62.787s FALSE
80730DE8 10.248s FALSE
FBDA3980 FBD47C80 00000000 18.588ms FALSE
NTice!.text+000479C0
FC392EB0 F74D0B4C FC392E80 19.884ms FALSE TDI!.text+088C
806DAD68 22.633ms FALSE
8066A108 29.323ms FALSE
807946D8 80802E90 807946A8 180.777s FALSE
807AF048 59.942ms FALSE
8078D1A8 80802EF0 8078D1A8 79.971ms FALSE
807079C8 5.223s FALSE
8074B108 68.043s FALSE
8073D108 159.510ms FALSE
238 SoftICE Command Reference

SoftICE Commands
The following example shows the output of TIMER when it is issued for a specific
timer object.

TIMER 80793568

Timer Object at 80793568
Dispatcher Type: 08
Dispatcher Size: 010A
Signal State: Not Signaled
Dispatch Wait List Forward Link: <self>
Dispatch Wait List Back Link: <self>
Remaining Time: 349.784ms
Timer List Forward Link: 8014D828
Timer List Back Link: 8014D828
Timer Object is NOT Periodic
Timer DPC: 80793548
DPC Routine: F74D0B4C TDI!.text+088C
DPC Context: 80793538

See Also APC, DPC
SoftICE Command Reference 239

SoftICE Commands
TRACE Windows 3.1, Windows 9x Symbol/Source

CTRL-F9, TRACE B, CTRL-F12

Enter or exit Trace simulation mode.

Syntax TRACE [b | off | start]

b Start tracing from the oldest instruction in the back trace history
buffer.

off Exit from trace simulation mode.

start Hexadecimal number specifying the index within the back trace
history buffer from which to start tracing. An index of 1 corresponds
to the newest instruction in the buffer.

Use Use the TRACE command to enter, exit, and display the current state of the trace
simulation mode. TRACE with no parameters displays the current state of trace
simulation mode. TRACE followed by off exits from trace simulation mode and
returns to regular debugging mode. TRACE B enters trace simulation mode starting
from the oldest instruction in the back trace history buffer. TRACE followed by a start
number enters trace simulation mode at the specified index within the back trace
history buffer.

You can use the trace simulation mode only if the back trace history buffer contains
instructions. To fill the back trace history buffer, use the BPR command with either the
T or TW parameter to specifying a range breakpoint.

When trace simulation mode is active, the help line at the bottom of the SoftICE
screen signals the trace mode and displays the index of the current instruction within
the back trace history buffer.

Use the XT, XP, and XG commands to step through the instructions in the back trace
history buffer from within the trace simulation mode. When stepping through the
back trace history buffer, the only register that changes is the EIP register because back
trace ranges do NOT record the contents of all the registers. You can use all the SoftICE
commands within trace simulation mode except for the following: X, T, G, P, HERE,
and XRSET.

Example The following example enters trace simulation mode starting at the eighth instruction
in the back trace history buffer.

TRACE 8

See Also BPR, BPRW, SHOW
240 SoftICE Command Reference

SoftICE Commands
TSS Windows 3.1, Windows 9x, Windows NT/2000/XP System Information

Display task state segment and I/O port hooks.

Syntax For Windows 3.1

TSS

For Windows 9x and Windows NT/2000/XP

TSS [TSS-selector]

TSS-selector Any GDT selector that represents a TSS.

Use This command displays the contents of the task state segment after reading the task
register (TR) to obtain its address.

You can display any 32-bit TSS by supplying a valid 32-bit Task Gate selector as a
parameter. Use the GDT command to find TSS selectors. If you do not specify a
parameter, the current TSS is shown.

Output The following information is displayed:

TSS selector value TSS selector number.

selector base Linear address of the TSS.

selector limit Size of the TSS.

The next four lines of the display show the contents of the register fields in the TSS.
The following registers are displayed:

LDT, GS, FS, DS, SS, CS, ES, CR3
EAX, EBX, ECX, EDX, EIP
ESI, EDI, EBP, ESP, EFLAGS
Level 0, 1 and 2 stack SS:ESP

For Windows 3.1 and Windows 9x

On Windows 3.1 and Windows 9x, the TSS command also displays the TSS bit mask
array. The bit mask array shows each I/O port that has been hooked by a Windows
virtual device driver (VxD). For each port, the following information is displayed:

port number 16-bit port number.
SoftICE Command Reference 241

SoftICE Commands
handler address 32-bit flat address of the port’s I/O handler. All I/O instructions on
the port will be reflected to this handler.

handler name Symbolic name of the I/O handler for the port. If symbols are
available for the VxD, the nearest symbol is displayed; otherwise the
name of the VxD followed by the handler’s offset within the VxD is
displayed.

For Windows 9x and Windows NT/2000/XP

On Windows 9x and Windows NT/2000/XP, the TSS command also displays the I/O
permission map base and size. A size of zero indicates that all I/O is trapped. A non-
zero size indicates that the I/O permission map determines if an I/O port is trapped.

Example The following example displays the task state segment in the Command window. The
output of the bit mask array is abbreviated.

TSS

TR=0018 BASE=C000AEBC LIMIT=2069
LDT=0000 GS=0000 FS=0000 DS=0000 SS=0000 CS=0000 ES=0000 CR3=00000000
EAX=00000000 EBX=00000000 ECX=00000000 EDX=00000000 EIP=00000000
ESI=00000000 EDI=00000000 EBP=00000000 ESP=00000000 EFL=00000000
SS0=0030:C33EEFA8 SS1=0000:00000000 SS2=0000:00000000
I/O Map Base=0068 I/O Map Size=2000

Port Handler Trapped Owner
0000 C00C3E92 Yes VDMAD(01)+17BA
0001 C00C3F0E Yes VDMAD(01)+1836
0002 C00C3E92 Yes VDMAD(01)+17BA
0003 C00C3F0E Yes VDMAD(01)+1836
0004 C00C3E92 Yes VDMAD(01)+17BA
0005 C00C3F0E Yes VDMAD(01)+1836
0006 C00C3E92 Yes VDMAD(01)+17BA
0007 C00C3F0E Yes VDMAD(01)+1836
0008 C00C3C55 Yes VDMAD(01)+157D
0009 C00C3D98 Yes VDMAD(01)+16C0

If you are interested in which VxD has hooked port 21h (interrupt mask register), you
would look at the TSS bit mask output of the TSS display for the entry corresponding
to the port. The following output, taken from the TSS command’s output, indicates
that the port is hooked by the virtual PIC device and its handler is at offset 800792B4
in the flat code segment. This corresponds to an offset of 0AF8h bytes from the
beginning of VPICD's code segment.

0021 800792B4 VPICD+0AF8
242 SoftICE Command Reference

SoftICE Commands
TYPES Windows 9x, Windows NT/2000/XP Symbol/Source Command

List all types in the current context or list all type information for the specified type-
name .

Syntax TYPES [type-name]

type-name List all type information for the specified type-name.

Use If you do not specify a type-name, TYPES lists all the types in the current context. If
you do specify a type-name, TYPES lists all the type information for the type-name
you specified. If the type-name you specified is a structure, TYPES expands the
structure and lists the typedefs for its members.

Example The following example displays all the types in the current context. The example
output is only a partial listing.

TYPES

Size Type Name Typedef
0x0004 ABORTPROC int stdcall (*proc) (void)
0x0004 ACCESS_MASK unsigned long
0x0004 ACL_INFORMATION_CLASS int
0x0018 ARRAY_INFO struct ARRAY_INFO
0x0002 ATOM unsigned short
0x0048 BALLDATA struct _BALLDATA
0x0048 _BALLDATA struct _BALLDATA
0x0020 _BEZBUFFER struct _BEZBUFFER
0x0004 BOOL int
0x0001 BOOLEAN unsigned char
0x0010 _BOUNCEDATA struct _BOUNCEDATA
0x0004 BSTR unsigned short *

The following example displays all type information for the type-name _bouncedata:

TYPES _bouncedata

typedef struct _BOUNCEDATA {
public:
 void * hBall1 ;
 void * hBall2 ;
 void * hBall3 ;
 void * hBall4 ;
};

See Also LOCALS, WL
SoftICE Command Reference 243

SoftICE Commands
U Windows 3.1, Windows 9x, Windows NT/2000/XP Display/Change Memory

Unassemble instructions.

Syntax For Windows 3.1

U [address] | [symbol-name]

For Windows 9x and Windows NT/2000/XP

U [address [l length]] | [symbol-name]

address Segment offset or selector offset.

symbol-name Scrolls the Code window to the function you specify.

length Number of instruction bytes.

Use The U command displays either source code or unassembled code at the specified
address. The code displays in the current mode (either code, mixed, or source) of the
Code window,. Source displays only if it is available for the specified address. To
change the mode of the Code window, use the SRC command (default key F3).

If you do not specify the address, the command unassembles at the address where you
left off.

If the Code window is visible, the instructions display in the Code window, otherwise
they display in the Command window. The Command window displays either eight
lines or one less than the length of the Command window.

To make the Code window visible, use the WC command (default key Alt-F3). To
move the cursor to the Code window, use the EC command (default key F6).

If the instruction is at the current CS:EIP, the U command displays the instruction
using the reverse video attribute. If the current CS:EIP instruction is a relative jump,
the instruction contains either the string JUMP or NO JUMP, indicating whether or
not the jump will be taken. If the jump will be taken, an arrow indicates if the jump
will go up or down in the Code window. If the current CS:EIP instruction references a
memory location, the U command displays the contents of the memory location in
the Register window beneath the flags field. If the Register window is not visible, this
value displays at the end of the code line.

If a breakpoint is set on an instruction being displayed, the code line is displayed
using the bold attribute.

If any of the memory addresses within an instruction have a corresponding symbol,
the symbol displays instead of the hexadecimal address. If an instruction is located at
a code symbol, the symbol name displays on the line above the instruction.
244 SoftICE Command Reference

SoftICE Commands
To view or suppress the actual hexadecimal bytes of the instruction, use the CODE
command.

For Windows 9x and Windows NT/2000/XP

If you specify a length, SoftICE disassembles the instructions in the Command
window instead of the Code window. This is useful for reverse engineering, for
example, disassembling an entire routine and then using the SoftICE Loader Save
SoftICE History function to capture the output to a file.

Example The following example unassembles instructions beginning at 10 hexadecimal bytes
before the current address.

U eip - 10

The following example displays source in the Code window starting at line number
121.

U .121

For Windows 9x and Windows NT/2000/XP

The following command disassembles 100h bytes starting at MyProc and displays the
output in the Command window.

U myproc L100
SoftICE Command Reference 245

SoftICE Commands
USB Windows 98, Windows Me, Windows NT/2000/XP System Information

Displays information about USB host controllers installed in the system.

Syntax USB [-dumpregs | -schedule] [-v] [host controller number]

-dumpregs Produces a detailed listing of the contents of the device’s
control registers.

-schedule Displays the current contents of the USB transaction schedule
for the specified host controller.

-v Displays inactive entries.

host controller number Specifies host controller number from the list generated by the
USB command with no parameters.

Use The USB command displays information about the USB host controllers installed in
the system. Issued with no parameters, the USB command will display a numbered list
of the host controllers detected. The -dumpregs and -schedule switches both require
the user to specify a host controller number from the list. USB -dumpregs [HC
number] will show the contents of the control registers for the specified host
controller, while USB -schedule [HC number] will display the current contents of the
USB transaction schedule for the specified host controller.

The output produced by the USB command with no parameters will contain a
numbered list of the USB controllers in the system, in the order they were detected by
SoftICE. It will also display which of the host controller specifications the device
complies with, UHCI, or Universal Host Controller Interface; or OHCI, the Open Host
Controller Interface. (EHCI, currently the only host controller specification for USB
2.0, will be supported in a future release of SoftICE). Which specification the host
controller supports will determine the output from the -dumpregs and -schedule
options. The PCI address of each device is also listed, allowing the user to easily access
more information about the device using the PCI command.

The -dumpregs switch will produce a detailed listing of the contents of the device’s
control registers. Host controller registers are defined by the host controller
specification the device conforms to, so the output from this command will differ
depending on the HC type. The user will need to consult the host controller
specifications themselves for a detailed description of the various control registers.
246 SoftICE Command Reference

SoftICE Commands
The -schedule switch produces a list of the currently active entries in the host
controller’s schedule. This command also accepts a verbose switch (-v), which will
cause it to display inactive entries as well. For UHCI controllers the entire schedule is
displayed, but for OHCI controllers this command displays only the interrupt entries
in the schedule; bulk and isochronous transactions are not shown.

Note: If SoftICE is set up to use a USB keyboard or mouse when the USB -schedule
command is issued, you may see SoftICE’s own entries in the USB schedule, rather
than Windows’. This is because SoftICE patches the USB schedule when it is popped
up, in order to use the keyboard and mouse. The patching will only affect USB
keyboard and mouse devices, not all USB devices in the system. If you need to see the
USB schedule with Windows’ keyboard and mouse schedule entries intact, you should
disable SoftICE’s USB input device support using the Troubleshooting tab in the
DriverStudio Configuration utility.

Example This is the output from the USB command on a particular system.

:usb
3 USB Host Controllers Found
 HC 0: UHCI at PCI Bus 0 Device 1F Function 2
 HC 1: UHCI at PCI Bus 0 Device 1F Function 4
 HC 2: OHCI at PCI Bus 4 Device F Function 0

Here is the output from the -dumpregs command, shown on a UHCI controller:

:usb -du 0
USB I/O registers for Host Controller 00:
Universal Host Controller at PCI Bus 00 Device 1F Function 02
USB Command (FF80) = 0081
 MaxP:64Bytes CF:0 SWDBG:0 FGR:0 EGSM:0 GRST:0 HCRST:0 R/S:Run
USB Status (FF82) = 0001
 HCHalted:0 HCProcError:0 HostErr:0 ResumeDtct:0 USBErrIntr:0 USBIntr:1
USB Interrupt Enable (FF84) = 000F
 Short Packet:1 IOC:1 Resume:1 Timeout/CRC:1
Frame Number (FF86) = 0050
FrameList BaseAddr (FF88) = 02BCE160
Start of Frame Modifier (FF8C) = 40 (12000 clocks/frame)
Port 1 Status/Control (FF90) = 0095
 Suspend:Enabled Rst:0 LowSpd:0 ResumeDtct:0 LineStat:1
 EnabChng:0 Enab:1 CStatChng:0 CStat:1
Port 2 Status/Control (FF92) = 0080
 Suspend:Enabled Rst:0 LowSpd:0 ResumeDtct:0 LineStat:0
 EnabChng:0 Enab:0 CStatChng:0 CStat:0
Legacy Support = 00003F00
 A20PTS:0 USBPIRQDEn:1 USBIRQS:1 TBy64W:1 TBy64R:1 TBy60W:1 TBy60R:1
 SMIEPTE:0 PSS:0 A20PTEn:0 USBSMIEn:0 64WEn:0 64REn:0 60WEn:0 60REn:0
SoftICE Command Reference 247

SoftICE Commands
Here is some of the output from the -schedule command. This example shows only
the first few entries; the complete USB schedule is quite long.

:usb -sc 0
USB Transaction Schedule for Host Controller 0:
Universal Host Controller at PCI Bus 0 Device 31 Function 2
USB schedule at 827CE000

Frame 0 at 827CE000
 =====Queue entry at 02DAF000=====
 Horiz Link Ptr: 02BCF3C0 (Queue:1 T:0)
 Vert Link Ptr: 02DAF100 (Queue:0 T:0)
 -------TD at 02DAF100-------
 Next Entry: 00000000 (Vf:0 Queue:0 T:1)
 SPD:1 C_ERR:3 LS:0 ISO:0 IOC:1 ActLen:800 bytes
 Status (Act:1 Stalled:0 DBErr:0 Babble:0 NAK:1 CRC/TMout:0
BitErr:0)
 MaxLen: 1 DataPID:0 EndPoint: 1 DevAddr: 1 PID: 69
 Buffer address: 02F16E70
 =======End Q=======
Frame 1 at 827CE004
 =====Queue entry at 02B5E000=====
 Horiz Link Ptr: 02BCF100 (Queue:1 T:0)
 Vert Link Ptr: 02D26460 (Queue:0 T:0)
 -------TD at 02D26460-------
 Next Entry: 02D26380 (Vf:0 Queue:0 T:0)
 SPD:1 C_ERR:3 LS:1 ISO:0 IOC:0 ActLen:800 bytes
 Status (Act:1 Stalled:0 DBErr:0 Babble:0 NAK:1 CRC/TMout:0
BitErr:0)
 MaxLen: 4 DataPID:1 EndPoint: 1 DevAddr: 2 PID: 69
 Buffer address: 02D26470
248 SoftICE Command Reference

SoftICE Commands
VCALL Windows 3.1, Windows 9x System Information

Display the names and addresses of VxD callable routines.

Syntax VCALL [partial-name]

partial-name VxD callable routine name or the first few characters of the name. If
more than one routine’s name matches the partial-name, VCALL lists
all routines that start with the specified characters.

Use The VCALL command displays the names and addresses of Windows VxD API
routines. These are Windows services provided by VxDs for other VxDs. All the
routines SoftICE lists are located in Windows system VxDs that are included as part of
the base-line Windows kernel.

The addresses displayed are not valid until the VMM VxD is initialized. If an X is not
present in the SoftICE initialization string, SoftICE pops up while Windows is booting
and VMM is not initialized.

The names of all VxD APIs are static. Only the function names provided in the
Windows DDK Include Files are available. These API names are not built into the final
VxD executable file. SoftICE provides API names for the following VxDs:

CONFIGMG IOS VCD VMCPD VSD

DOSMGR NDIS VCOMM VMD VTD

DOSNET PAGEFILE VCOND VMM VWIN32

EBIOS PAGESWAP VDD VMPOLL VXDLDR

ENABLE SHELL VDMAD VNETBIOS

IFSMGR V86MMGR VFBACKUP VPICD

INT13 VCACHE VKD VREDIR
SoftICE Command Reference 249

SoftICE Commands
Example The following example lists all Windows system VxD calls that start with Call. Sample
output follows the command.

VCALL call

80006E04 Call_When_VM_Returns

80009FD4 Call_Global_Event

80009FF4 Call_VM_Event

8000A018 Call_Priority_VM_Event

8000969C Call_When_VM_Ints_Enabled

800082C0 Call_When_Not_Critical

8000889F Call_When_Task_Switched

8000898C Call_When_Idle
250 SoftICE Command Reference

SoftICE Commands
VER Windows 3.1, Windows 9x, Windows NT/2000/XP Miscellaneous

Display the SoftICE version number.

Syntax VER

Hint: To view your registration information and product serial number, start SoftICE
Loader and choose About SoftICE Loader from the Help menu.

Example The following example displays the SoftICE version number and operating system
version.

VER
SoftICE Command Reference 251

SoftICE Commands
VM Windows 3.1, Windows 9x System Information

Display information on virtual machines.

Syntax VM [-S] [VM-ID]

-S Switches to the VM identified by the VM-ID.

VM-ID Index number of the virtual machine. Index numbers start at 1. Index
number 1 is always assigned to the Windows System VM, the VM in
which Windows applications run.

Use If no parameters are specified, the VM command displays information about all
virtual machines (VM) in the system. If a VM-ID is specified, the register values of the
VM are displayed. These registers are those found in the client register area of the
virtual machine control block, so they represent the values last saved into the control
block when there was a context switch away from the VM. If SoftICE is popped up
while a VM is executing, the registers displayed in the SoftICE Register window, not
the ones shown in the VM command output, are the current registers for the VM.
However, if you are in the first few instructions of an interrupt routine in which a
virtual machine’s registers are being saved to the control block, the CS:IP register may
be the only valid register. The others will not have been saved yet.

The command displays two sets of segment registers plus the EIP and SP registers. The
segment registers are used for the protected mode and the real mode contexts of the
VM. If a VM was executing in protected mode last, the protected mode registers are
listed first. If V86 mode was the last execution mode, the V86 segment registers are
listed first. The general purpose registers, displayed below the segment registers,
correspond to the segment registers listed first.

A VM is a unit of scheduling for the Windows kernel. A VM can have one protected
mode thread under Windows 3.1, and multiple protected mode threads under
Windows 9x. In both cases, the VM has one V86 mode thread of execution. Windows,
Windows applications, and DLLs all run in protected mode threads of VM 1 (the
System VM).

VMs other than the System VM normally have a V86 thread of execution only.
However, DPMI applications (also known as DOS extended applications) launched
from these VMs can also execute in a protected mode thread.

The VM command is very useful for debugging VxDs, DPMI programs, and DOS
programs running under Windows. For example, if the system hangs while running a
DOS program, you can often use the VM command to find the address of the last
instruction executed. The last instruction would be the CS:EIP shown for the VM’s
V86 thread.
252 SoftICE Command Reference

SoftICE Commands
The VM command can also be very valuable when Windows faults all the way back to
DOS. That is, when Windows cannot handle a fault and exits Windows, your
computer is left at the DOS prompt.

If this case, set I1HERE ON in SoftICE and duplicate the problem so that Windows
executes an INT 1 prior to returning to DOS. When the fault happens, SoftICE pops
up. You can then use the VM command to find out the last address of execution and
the CR command to find the fault address. CR2 contains the fault address. The ESI
register usually points to an error message at this point.

Output For each virtual machine, VM displays the following information.

VM Handle VM handle is actually a flat offset of the data structure that holds
information about the VM.

Status This is a bit mask that shows current state information for the VxD.
The values are as follows:

0001H Exclusive mode

0002H Runs in background

0004H In process of creating

0008H Suspended

0010H Partially destroyed

0020H Executing protected mode code

0040H Executing protected mode app

0080H Executing 32-bit protected app

0100H Executing call from VxD

0200H High priority background

0400H Blocked on semaphore

0800H Woke up after blocked

1000H Part of V86 App is pageable

2000H Rest of V86 is locked

4000H Scheduled by time-slices

8000H Idle, has released time slice
SoftICE Command Reference 253

SoftICE Commands
High Address Alternate address space for VM. This is where a VxD typically accesses
VM memory (instead of 0).
Note: It is likely that parts of the VM will be paged out when SoftICE
pops up.

VM-ID Index number of this VxD, starting at 1.

Client Registers Address of the saved registers of this VM. This address actually points
into the level 0 stack for this VM.

Example The following example shows the use of the VM command without parameters

VM

VM Handle Status High Addr VM-ID Client Regs

806A1000 00004000 81800000 3 806A8F94

8061A000 00000008 81400000 2 80515F94

80461000 00007060 81000000 1 80013390
254 SoftICE Command Reference

SoftICE Commands
VXD Windows 3.1 System Information

Display the Windows VxD map.

Syntax VXD [VxD-name | partial-VxD-name]

VxD-name Name of a virtual device driver.

partial-VxD-name First few characters of the name.

Use This command displays a map of all Windows virtual device drivers in the Command
window. If no parameters are specified, all VxDs are displayed. If a VxD-name is
specified, only information about the VxD with that name displays.

For Windows 9x,
refer to VXD on page
257.

If a partial name is specified, SoftICE displays information on all VxDs whose name
begins with the partial name.

Information that is shown about a VxD includes the VxD’s control procedure address,
its Protected Mode and V86 API addresses, and the addresses of all VxD services it
implements. If the current CS:EIP belongs to one of the VxD's in the map, the line
with the address range that contains the CS:EIP will be highlighted.

Output If no parameters are specified, each entry in the VxD map contains the following
information:

VxD name Name specified in the .DEF file when the VxD was built.

address Flat 32-bit address of one VxD section. VxDs are comprised of
multiple sections where each section contains both code and data. (i.e.
LockCode, LockData would be one section.)

size Length of the VxD section. This includes both the code and the data
of the VxD group.

code selector Flat code selector.

data selector Flat data selector.

type Section number from the .386 file.

id VxD ID number. The VxD ID numbers are used to obtain the
Protected Mode and V86 API addresses that applications call.

DDB Address of the VxDs Device Descriptor Block (DDB). This is a
control block that contains information about the VxD such as the
address of the Control Procedure and addresses of APIs.
SoftICE Command Reference 255

SoftICE Commands
If a VxD name is specified, the following information is displayed in addition to the
previous information:

Control Procedure Routine to which all VxD messages are dispatched.

Protected Mode API Address of the routine where all services called by protected mode
applications are processed.

V86 API Address Address of the routine where all services called by V86 applications are
processed.

VxD Services List of all VxD services that are callable from other VxDs. For the
Windows system VxDs, both the name and the address of the routines
are displayed.

Example The following example displays the VxD map in the Command window. The first few
lines of the display would look something like the following. You can use the VxD
names in the table as symbol names. The address of seg 1 will be used when a VxD
name is used in an expression.

VXD

See Also For Windows 9x, refer to VXD on page 257.

VxDName Address Length Code Data Type ID DDB

VMM 80001000 000193D0 0028 0030 LGRP 01

VMM 80200000 00002F1C 0028 0030 IGRP

LoadHi 8001A3d0 000007E8 0028 0030 LGRP 02

LoadHi 80202F1C 00000788 0028 0030 IGRP

WINICE 8001ABB8 00027875 0028 0030 LGRP

CV1 80042430 0000036B 0028 0030 LGRP

VDDVGA 8004279C 00007AD8 0028 0030 LGRP

VDDVGA 802036A8 000005EC 0028 0030 IGRP
256 SoftICE Command Reference

SoftICE Commands
VXD Windows 9x System Information

Display the Windows VxD map.

Syntax VXD [VxD-name]

VxD-name Name or partial name of one or more virtual device drivers.

Use Use this command to obtain information about one or more VxDs. If you do not
specify any parameters, it displays a map of all the Windows virtual device drivers that
are currently loaded in the system. Dynamically loaded VxDs are listed after statically
loaded VxDs. If a VxD-name is specified, only that VxD, or VxDs with the same string
at the start of their name are displayed. For example, VM will match VMM and
VMOUSE. If the current CS:EIP belongs to one of the VxDs in the map, the line with
the address range that contains the CS:EIP is highlighted.

For Windows 3.1,
refer to VXD on page
255.

If no parameters are specified, each entry in the VxD map contains this information:

VxDName VxD Name.

Address Base address of the segment.

Length Length of the segment.

Seg Section number from the executable.

ID VxD ID.

DDB Address of the VxD descriptor block.

Control Address of the control dispatch handler.

PM Y, if the VxD has a protected mode API. N otherwise.

V86 Y, if the VxD has a V86 API. N otherwise.

VXD Number of VxD services implemented.

Win32 Number of Win32 services implemented.

If a unique VxD name is specified, the following additional information appears:

Init Order Order in which VxDs receive control messages. A zero value indicates
highest priority.

Reference Data The dword value that was passed from the real mode initialization
procedure (if any) of the VxD.

Version VxD version number.
SoftICE Command Reference 257

SoftICE Commands
PM API PM API FLAT procedure address and PM API Ring-3 address used by
applications. Refer to the following comments on PM and V86 APIs.

V86 API V86 API FLAT procedure address and V86 API Ring-3 address used
by applications. Refer to the next comments on PM and V86 APIs.

The PM API and V86 API parameters are register based and it is up to the individual
VxD to define subfunctions and parameter passing (on entry EBX-VM Handle, EBP-
client registers). If the Ring-3 address shown is 0:0, it means that no application code
has yet requested the API address through INT 2F function 1684h.

When the VxD being listed has a Win32 service table, the following information is
presented for each service:

Service Number Win32 Service Number.

Service Address Address of the service API handler.

Params Number of dword parameters the service requires.

When the VxD being listed has a VxD service table, the following is shown for each
service:

Service Number VxD service number.

Service Address Flat address of service.

Service Name Symbol name if known (from VCALL list).

Example The following example displays the VxD map in the Command window. The first few
lines of the display look similar to the following. You can use the VxD as symbol
names. The address of Seg 1 is used when a VxD name is used in an expression.

VXD

See Also For Windows 3.1, refer to VXD on page 255.

VxD
Name

Address Length Seg ID DDB Control PM V86 VxD Win32

VMM C0001000 00FDC0 0001 0001 C000E990 C00024F8 Y Y 402 41

VMM C0200000 000897 0002

VMM C03E0000 000723 0003

VMM C0320000 000095 0004

VMM C0360000 00ED50 0005

VMM C0260000 007938 0006
258 SoftICE Command Reference

SoftICE Commands
WATCH Windows 3.1, Windows 9x, Windows NT/2000/XP Watch

Add a watch expression.

Syntax WATCH expression

Use Use the WATCH command to display the results of expressions. SoftICE determines
the size of the result based on the expression’s type information. If SoftICE cannot
determine the size, dword is assumed. The expressions being watched are displayed in
the Watch window. There can be up to eight watch expressions at a time. Every time
the SoftICE screen is popped up, the Watch window displays the expression’s current
values.

Each line in the Watch window contains the following information:

• Expression being evaluated.

• Expression type.

• Current value of the expression displayed in the appropriate format.

A plus sign (+) preceding the type indicates that you can expand it to view more
information. To expand the type, either double-click the type or press Alt-W to enter
the Watch window, use the UpArrow and DownArrow keys to move the highlight bar
to the type you want to expand, and press Enter.

If the expression being watched goes out of scope, SoftICE displays the following
message: “Error evaluating expression”.

To delete a watch, use either the mouse or keyboard to select the watch and press
Delete.

Example The following example creates an entry in the Watch window for the variable
hInstance.

WATCH hInstance

The following example indicates that the type for hInstance is void pointer (void *)
and its current value is 0x00400000.

hPrevInstance void * = 0x00400000

The following example displays the dword to which the DS:ESI registers point.

WATCH ds:esi
ds:esi void * =0x8158D72E

To watch what ds:esi points to, use the pointer operator (*):

WATCH * ds:esi
SoftICE Command Reference 259

SoftICE Commands
The following example sets a watch on a pointer to a character string lpszCmdLine.
The results show the value of the pointer (0x8158D72E) and the ASCII string
(currently null).

WATCH lpszCmdLine +char * =0x8158D72E <"">

Double-clicking on this line expands it to show the actual string contents.

lpszCmdLine -char * =0x8158D72E
char = 0x0

See Also Alt-W, WW
260 SoftICE Command Reference

SoftICE Commands

WC Windows 3.1, Windows 9x, Windows NT/2000/XP Window Control

Alt-F3

Toggle the Code window open or closed; and set the size of the Code window.

Syntax WC [+ | -][window-size]

+ | - Optional switch to increase or decrease the window size by
the decimal number referred to in window-size.

window-size Decimal number.

Use If you do not specify window-size, WC toggles the window open or closed. If the Code
window is closed, WC opens it; and if it is open, WC closes it.

If you specify the window-size, the Code window is resized. If it is closed, WC opens it
to the specified size.

When the Code window is closed, the extra screen lines are added to the Command
window. When the Code window is opened, the lines are taken from the other
windows in the following order: Command and Data.

If you wish to move the cursor to the Code window, use the EC command (default key
F6).

Example If the Code window is closed, the following example displays the window and sets it
to twelve lines. If the Code window is open, the example sets it to twelve lines.

WC 12

The following example expands the twelve-line code window (set in the previous
example) to eighteen lines.

WC +6

See Also WD, WF, WL, WR, WS, WT, WW, WX
SoftICE Command Reference 261

SoftICE Commands

WD Windows 3.1, Windows 9x, Windows NT/2000/XP Window Control

Alt-F2

Toggle the Data window open or closed; and set the size of the Data window.

Syntax WD [+ | -][window-size]

+ | - Optional switch to increase or decrease the window size by
the decimal number referred to in window-size.

window-size Decimal number.

Use If you do not specify the window-size, WD toggles the Data window open or closed. If
the Data window is closed, WD opens it; and if it is open, WD closes it.

If you specify the window-size, the Data window is resized. If it is closed, WD opens it
to the specified size.

When the Data window is closed, the extra screen lines are added to the Command
window. When the Data window is opened, the lines are taken from the other
windows in the following order: Command and Code.

If you wish to move the cursor to the Data window to edit data, use the E command.

Example If the Data window is closed, the following example displays the window and sets it to
twelve lines. If the Data window is open, the example sets it to twelve lines.

WD 12

The following example expands the twelve-line code window (set in the previous
example) to eighteen lines.

WD +6

See Also WC, WF, WL, WR, WS, WT, WW, WX
262 SoftICE Command Reference

SoftICE Commands
WF Windows 9x, Windows NT/2000/XP Window Control

CTRL-F3

Display the floating point stack in either floating point or MMX format.

Syntax WF [-d] [b | w | d | f | p | *]

-d Display the floating point stack in the Command window. In addition
to the registers, both the FPU status word and the FPU control word
display in ASCII format.

b Display the floating point stack in byte hexadecimal format.

w Display the floating point stack in word hexadecimal format.

d Display the floating point stack in dword hexadecimal format.

f Display the floating point stack in 10-byte real format.

p Display the floating point stack as packed 32-bit floating point. This
is the AMD 3DNow format.

* Display the “next” format. The “*” keyword is present to allow cycling
through all the display formats by pressing a function key.

Use WF with no parameters toggles the display of the floating point Register window. The
window occupies four lines and is displayed immediately below the Register window.
In 10 byte real format, the registers are labeled ST0-ST7. In all other formats the
registers are labeled MM0-MM7.

If the floating point stack contains an unmasked exception, SoftICE will NOT display
the stack contents. When reading the FPS, SoftICE obeys the tag bits and displays
’empty’ if the tag bits specify that state.

When displaying in the Command window, SoftICE displays both the status word and
the control word in ASCII format.
SoftICE Command Reference 263

SoftICE Commands
Example The following example shows the use of the WF command with the -d option set to
show the floating point stack, and the -f option set to display the stack in 10-byte real
format.

WF -d f

FPU Status Word: top=2
FPU Control Word: PM UM OM ZM DM IM pc=3 rc=0
ST0 1.619534411708533451e-289
ST1 9.930182991407099205e-293
ST2 6.779357630001165015e-296
ST3 4.274541060856685014e-299
ST4 2.782904336495237639e-302
ST5 1.818657819582844735e-305
ST6 empty
ST7 empty

Note: ASCII flags are documented in the INTEL Pentium Processor User’s Manual,
“Architecture and Programming,” Volume 3.

When displaying in any of the hexadecimal formats, SoftICE always display left to
right from most significant to least significant. For example, in word format, the
following order would be used:

bits(63-48) bits(47-32) bits(31-16) bits(15-0)

See Also WC, WD, WL, WR, WS, WT, WW, WX
264 SoftICE Command Reference

SoftICE Commands
WHAT Windows 9x, Windows NT/2000/XP System Information

Determine if a name or expression is a “known” type.

Syntax WHAT [name | expression]

name Any symbolic name that cannot be evaluated as an expression.

expression Any expression that can be interpreted as an expression.

Use The WHAT command analyzes the parameter specified and compares it to known
names/values, enumerating each possible match, until no more matches can be
found. Where appropriate, type identification of a match is expanded to indicate
relevant information such as a related process or thread.

The name parameter is typically a collection of alphanumeric characters that represent
the name of an object. For example, “Explorer” would be interpreted as a name, and
might be identified as either a module, a process, or both.

The expression parameter is something that would not generally be considered a name.
That is, it is a number, a complex expression (an expression which contains operators,
such as Explorer + 0), or a register name. Although a register looks like a name,
registers are special cased as expressions since this usage is much more common. For
example, for WHAT eax, the parameter eax is interpreted as an expression-type.
Symbol names are treated as names, and will be correctly identified by the WHAT
command as symbols.

Because the rules for determining name- and expression-types can be ambiguous at
times, you can force a parameter to be evaluated as a name-type by placing it in
quotes. For example, for WHAT “eax”, the quotes force eax to be interpreted as a
name-type. To force a parameter that might be interpreted as a name-type to an
expression-type, use the unary “+” operator. For example, for WHAT +Explorer, the
presence of the unary “+” operator forces Explorer to be interpreted as a symbol,
instead of a name.

Example The following is an example of using the WHAT command on the name Explorer and
the resulting output. From the output, you can see that the name Explorer was
identified twice: once as a kernel process and once as a module.

WHAT explorer

The name (explorer) was identified and has the value FD854A80
The value (FD854A80) is a Kernel Process (KPEB) for Explorer(58)

The name (explorer) was identified and has the value 1000000
The value (1000000) is a Module Image Base for ’Explorer’
SoftICE Command Reference 265

SoftICE Commands
WIDTH Windows 9x, Windows NT/2000/XP Customization

Set the number of display columns in the SoftICE window.

Syntax WIDTH [80-160]

80 - 160 The number of display columns.

Use When you are using SoftICE with the Universal Video Driver, you can use the WIDTH
command can be used to set the number of display columns between 80 and 160. The
default width is 80.

If you enter the WIDTH command without specifying a parameter, SoftICE displays
the current setting of the window’s width.

Example The following example sets the width of the SoftICE window to 90 display columns.

WIDTH 90

The following command returns the current width setting of the SoftICE window.

WIDTH

See Also LINES, SET
266 SoftICE Command Reference

SoftICE Commands
WL Windows 9x, Windows NT/2000/XP Window Control Command

Toggle the Locals window open or closed; and set the size of the Locals window.

Syntax WL [+ | -][window-size]

+ | - Optional switch to increase or decrease the window size by
the decimal number referred to in window-size.

window-size Decimal number.

Use If you do not specify the window-size, WL toggles the Locals window open or closed.
If the Local window is closed, WL opens it; and if it is open, WL closes it.

If you specify the window-size, the Locals window is resized. If it is closed, WL opens it
to the specified size.

When the Locals window is closed, the extra screen lines are added to the Command
window. When the Locals window is opened, the lines are taken from the other
windows in the following order: Command and Code.

Hint: From within the Locals window, you can expand structures, arrays, and character
strings to display their contents. Simply double-click the item you want to expand.
Note that expandable items are indicated with a plus mark (+).

Example If the Locals window is closed, the following example displays the window and sets it
to twelve lines. If the Locals window is open, the example sets it to twelve lines.

WL 12

The following example expands the twelve-line code window (set in the previous
example) to eighteen lines.

WL +6

See Also LOCALS, TYPES, WC, WD, WF, WR, WS, WT, WW, WX
SoftICE Command Reference 267

SoftICE Commands
WMSG Windows 3.1, Windows 9x, Windows NT/2000/XP System Information

Display the names and message numbers of Windows messages.

Syntax For Windows 3.1

WMSG [partial-name]

For Windows 9x and Windows NT/2000/XP

WMSG [partial-name| msg-number]

partial-name Windows message name or the first few characters of a Windows
message name. If multiple Windows messages match the partial-name
then all messages that start with the specified characters display.

msg-number Hexadecimal message number of the message. Only the message that
matches the msg-number displays.

Use The following command displays the names and message numbers of Windows
messages. It is useful when logging or setting breakpoints on Windows messages with
the BMSG command.

Examples The following example displays the names and message numbers of all Windows
messages that start with "WM_GET".

WMSG wm_get*

A sample output for this command follows:

000D WM_GETTEXT
000E WM_GETTEXTLENGTH
0024 WM_GETMINMAXINFO
0031 WM_GETFONT
0087 WM_GETDLGCODE

The following example displays the Windows message that has the specified message
number, 111.

WMSG 111

0111 WM_Command
268 SoftICE Command Reference

SoftICE Commands

WR Windows 3.1, Windows 9x, Windows NT/2000/XP Window Control

F2

Toggle the Register window.

Syntax WR

Use The WR command makes the Register window visible if it is not currently visible. If
the Register window is currently visible, WR closes the Register window.

The Register window displays the 80386 register set and the processor flags.

When the Register window is closed, the extra screen lines are added to the Command
window.

When the Register window is made visible, the lines are taken from the other windows
in the following order: Command, Code and Data.

For Windows 9x and Windows NT/2000/XP

The WR command also toggles the visibility of the floating point Register window if
one is open.

See Also WC, WD, WF, WL, WS, WT, WW, WX
SoftICE Command Reference 269

SoftICE Commands
WS Windows 9x, Windows NT/2000/XP Window Control

ALT-S

Toggle the call stack window open or closed, and set the size of this window.

Syntax WS [+ | -][window-size]

+ | - Optional switch to increase or decrease the window size by
the decimal number referred to in window-size.

window-size The number of lines in the SoftICE window assigned to the call stack
window.

Use You can use the arrow keys to select a particular call stack element. When you select a
call stack item and press Enter, SoftICE updates the Locals and Code windows to show
the selected stack level. You can also click your mouse in the Stack window to set
focus, single-click an item to select it, and double-click an item to update the Locals
and Code windows.

Example The following command opens the Stack window, if it is closed, and sets its size to
twelve lines.

WS 12

The following example expands the twelve-line Stack window (set in the previous
example) to eighteen lines.

WS +6

See Also WC, WD, WF, WL, WR, WT, WW, WX
270 SoftICE Command Reference

SoftICE Commands
WT Windows 9x Window Control

Alt-T

Toggle the Thread window open or closed; set the size of the Thread window.

Syntax WT [+ | -][window-size]

+ | - Optional switch to increase or decrease the window size by
the decimal number referred to in window-size.

window-size Decimal number.

Use If you do not specify the window-size, WT toggles the window open or closed. If the
Thread window is closed, WT opens it; if it is open, WT closes it.

If you specify the window-size, the Thread window is resized. If it is closed, WT opens
it to the specified size.

The WT command displays information on threads for a given process. By using the
ADDR commnad, you can switch to a different process context (thereby switching the
viewable threads).

The information displayed for each thread is the same as displayed by the Thread
command.

If you wish to move the cursor to the Thread window, use the Alt-T hotkey.

Example If the Thread window is closed, the following example displays the window and sets it
to twelve lines. If the Thread window is open, this example sets it to twelve lines.

WT 12

The following example expands the twelve-line Thread window (set in the previous
example) to eighteen lines.

WT +6

See Also WC, WD, WF, WL, WR, WS, WX, THREAD(9x)
SoftICE Command Reference 271

SoftICE Commands
WT Windows NT/2000/XP Window Control

Alt-T

Toggle the Thread window open or closed; set the size of the Thread window.

Syntax WT [window-size][+ | -][window-size]

+ | - Optional switch to increase or decrease the window size by
the decimal number referred to in window-size.

window-size Decimal number.

Use If you do not specify the window-size, WT toggles the window open or closed. If the
Thread window is closed, WT opens it; if it is open, WT closes it. If you specify the
window-size, the Thread window is resized. If it is closed, WT opens it to the specified
size.

The WT command displays information on threads for a given process. By using the
ADDR commnad, you can switch to a different process context (thereby switching the
viewable threads). The information displayed for each thread includes the thread ID,
KTEB, UTEB, state, process (ID #), and attributes. Information under the attributes can
be any combination of the following:

* Identifies the currently executing thread.

NP Means that the thread’s frame has been paged out (i.e., Not Present).

S Means that the particular entry is selected and the Code, Stack, and
Locals windows are referring to that thread.

If you wish to move the cursor to the Thread window, use the Alt-T hotkey. By
navigating into the Thread window and selecting one of the threads, the Stack, Code,
and Locals windows will be updated to reflect the thread that is selected. If the
selected thread’s frame is paged out, the Stack, Code, and Locals windows will default
to the currently executing thread.

Example If the Thread window is closed, the following example displays the window and sets it
to twelve lines. If the Thread window is open, this example sets it to twelve lines.

WT 12

The following example expands the twelve-line Thread window (set in the previous
example) to eighteen lines.

WT +6

See Also WC, WD, WF, WL, WR, WS, WX, THREAD (NT)
272 SoftICE Command Reference

SoftICE Commands

WW Windows 3.1, Windows 9x, Windows NT/2000/XP Window Control

Alt-F4

Toggle the Watch window open or closed, set the size of the Watch window.

Syntax WW [window-size][+ | -][window-size]

+ | - Optional switch to increase or decrease the window size by
the decimal number referred to in window-size.

window-size Decimal number.

Use If you do not specify the window-size, WW toggles the Watch window open or closed.
If the Watch window is closed, WW opens it; if it is open, WW closes it.

If you specify the window-size, the Watch window is resized. If it is closed, WW opens
it to the specified size.

When the Watch window is closed, the extra screen lines are added to the Command
window. When the Watch window is opened, the lines are taken from the other
windows in the following order: Command, Code, and Data.

Example If the Watch window is closed, the following example displays the window and sets it
to twelve lines. If the Watch window is open, this example sets it to twelve lines.

WW 12

The following example expands the twelve-line Watch window (set in the previous
example) to eighteen lines.

WW +6

See Also WC, WD, WF, WL, WR, WS, WT, WX
SoftICE Command Reference 273

SoftICE Commands
WX Windows NT/2000/XP Window Control

Toggle the XMM register window open or closed; set the display format of the
window.

Syntax WX [F/SF/DF | D/Q/DQ | *]

F Display as short real values.

SF Signed real value.

DF Double real value.

D Display as 32-bit dword values.

Q Display as 64-bit quadword values.

DQ Display as 128-bit double quadword values.

* Change to next format.

Use On computers using the Pentium III CPU, you can use the WX command to display a
window that contains the value of the XMM registers, XMM0 through XMM7. If you
use the F option, the register values are displayed as short real values. If you use the SF
option, the register values are displayed as signed real values. If you use the DF option,
the register values are displayed as double real values. If you use the D option the
values are displayed as 32-bit dwords. If you use the Q option the values are displayed
as 64-bit quadwords. If you use the DQ option the values are displayed as 128-bit
double quadwords. You can use an asterisk (*) to change to the next format.

Example The following example displays the XMM register window. The values are displayed as
dwords.

WX d

See Also WC, WD, WF, WL, WR, WS, WT, WW
274 SoftICE Command Reference

SoftICE Commands
X Windows 3.1, Windows 9x, Windows NT/2000/XP Flow Control

F5

Exit from the SoftICE screen.

Syntax X

Use The X command exits SoftICE and restores control to the program that was
interrupted to bring up SoftICE. The SoftICE screen disappears. If you had set any
breakpoints, they become active.

Note: While in SoftICE, pressing the hot key sequence (default key Ctrl-D) or entering the
G command without any parameters is equivalent to entering the X command.
SoftICE Command Reference 275

SoftICE Commands
XFRAME Windows 9x, Windows NT/2000/XP System Information

Display exception handler frames that are currently installed.

Syntax XFRAME [except-frame* | thread-type]

except-frame* Stack pointer value for an exception frame.

thread-type Value that SoftICE recognizes as a thread.

Use Exception frames are created by Microsoft’s Structured Exception Handling API (SEH).
Handlers are instantiated on the stack, so they are context specific.

When an exception handler is installed, information about it is recorded in the
current stack frame. This information is referred to as an ExceptionRegistration. The
XFRAME command understands this information, and walks backwards through stack
frames until it reaches the top-most exception handler. From there it begins displaying
each registration record up to the currently active scope. From each registration, it
determines if the handler is active or inactive; its associated "global exception
handler;" and, if the handler is active, the SEH type: try/except or try/finally. In the
case of active exception handlers, it also displays the exception filter or finally handler
address.

Note: The global exception handler is actually an exception dispatcher that uses information
within an exception scope table to determine which, if any, exception handler handles
the exception. It also handles other tasks such as global and local unwinds.

You can use the global exception handler, and try/except/finally addresses to trap SEH
exceptions by setting breakpoints on appropriate handler addresses.

The XFRAME command is context-sensitive, so if you do not specify one of the
optional parameters, SoftICE reverts to the context that was active at pop-up time and
displays the exception frames for the current thread. When specifying an exception
frame pointer as an optional parameter, make sure you are in a context in which the
exception frame is valid. For thread-type parameters, SoftICE automatically switches
to the correct context for the thread.

Below the information for the ExceptionRegistration record, XFRAME lists each active
handler for the exception frame. For each active handler, XFRAME displays its type
(try/except or try/finally), the address of its exception filter (for try/except only), and
the address of the exception handler. Because exception handlers can be nested, more
than one entry may be listed for each ExceptionRegistration record.

The XFRAME command displays bare addresses in its output. You can use either the
STACK or WHAT commands to determine the API that installed an exception handler.
276 SoftICE Command Reference

SoftICE Commands
Do not confuse the xScope value with the nesting level of exception handlers.
Although these values may appear to have some correlation, the value of xScope is
simply an index into a scope table (xTable). The scope table entry contains a link to its
parent scope (if any).

In the event that a stack frame is not present, the XFRAME will not be able to
complete the stack walk.

Output For each exception frame that is installed, XFRAME displays the following
information:

xFrame Address of the ExceptionRegistration. This value is stack based.

xHandler Address of the global exception handler which dispatches the
exception to the appropriate try/except/finally filter/handler.

xTable Address of the scope table used by the global exception handler to
dispatch exceptions.

xScope Index into the xTable for the currently active exception handler. If this
value is -1, the exception handler is installed, but is inactive and will
not trap an exception.

Example The following example illustrates the use of the XFRAME command to display
information about the exception handler frames for the currently active thread:

XFRAME

xFrame xHandler xTable xScope

------ -------- ------ ------

0x45FFFDC 0x60639638 0x606018B8 00

 try/except (0000) filter=0x60606F72, handler=0x60606F85

0x45FFFA8 0x5FE16890 0x5FE11210 00

 try/except (0000) filter=0x5FE125EB, handler=0x5FE125F8

0x45FFB74 0x77F8B1BC 0x77F61370 00

 try/except (0000) filter=0x77F7DD21, handler=0x77F7DD31
SoftICE Command Reference 277

SoftICE Commands
XG Windows 3.1, Windows 9x Symbol/Source

Go to an address in trace simulation mode.

Syntax XG [r] address

r Reverse. Go backwards in back trace history buffer.

Use XG does a Go to a specific code address within the back trace history buffer. This
command can only be used in trace simulation mode. The R parameter makes XG go
backwards within the back trace history buffer. If the specified address is not found
within the back trace history buffer, an error displays.

Example The following example makes the instruction at address CS:2FF000h the current
instruction in the back trace history buffer.

XG 2ff000
278 SoftICE Command Reference

SoftICE Commands
XP Windows 3.1, Windows 9x Symbol/Source

Ctrl-F10

Program step in trace simulation mode.

Syntax XP

Use The XP command does a program step of the current instruction in the back trace
history buffer. It can only be used in trace simulation mode. Use this command to skip
over calls to procedures and rep string instructions.

Example The following example does a program step over the current instruction in the back
trace history buffer.

XP
SoftICE Command Reference 279

SoftICE Commands
XRSET Windows 3.1, Windows 9x Symbol/Source Command

Reset the back trace history buffer.

Syntax XRSET

Use XRSET clears all information from the back trace history buffer. It can only be used
when NOT in trace simulation mode.

Example The following example clears the back trace history buffer.

XRSET
280 SoftICE Command Reference

SoftICE Commands
XT Windows 3.1, Windows 9x Symbol/Source Command

Ctrl-F8, XT R Alt-F8

Single step in trace simulation mode.

Syntax XT [R]

R Reverse. Step backwards in Beatrice history buffer.

Use Use the XT command to single step the current instruction in the back trace history
buffer. You can only use the XT command in trace simulation mode. This command
steps to the next instruction contained in the back trace history buffer. The command
XT R single steps backwards within the back trace history buffer.

Example The following example single steps one instruction forward in the back trace history
buffer.

XT
SoftICE Command Reference 281

SoftICE Commands
ZAP Windows 3.1, Windows 9x, Windows NT/2000/XP Mode Control Command

Replace an embedded interrupt 1 or 3 with a NOP.

Syntax ZAP

Use The ZAP command replaces an embedded interrupt 1 or 3 with the appropriate
number of NOP instructions. This is useful when the INT 1 or INT 3 is placed in code
that is repeatedly executed, and you no longer want SoftICE to pop up. This command
works only if the INT 1 or INT 3 instruction is the instruction before the current
CS:EIP.

Example The following example replaces the embedded interrupt 1 or interrupt 3 with a NOP
instruction.

ZAP
282 SoftICE Command Reference

	SoftICE Command Reference
	Software License Agreement
	Table of Contents (Hyperlinked)
	SoftICE Command Description

