

Summary of Contents

Preface . xv

1. Getting Started with CSS . 1

2. Text Styling and Other Basics . 13

3. CSS and Images . 59

4. Navigation . 83

5. Tabular Data . 135

6. Forms and User Interfaces . 175

7. Cross-browser Techniques . 215

8. Accessibility and Alternative Devices . 259

9. CSS Positioning and Layout . 293

Index . 377

THE CSS
ANTHOLOGY
101 ESSENTIAL TIPS, TRICKS & HACKS

BY RACHEL ANDREW
2ND EDITION

The CSS Anthologyiv

The CSS Anthology: 101 Essential Tips, Tricks & Hacks
by Rachel Andrew

Copyright © 2007 SitePoint Pty Ltd

Editor: Georgina Laidlaw Index Editor: Bill Johncocks

Managing Editor: Simon Mackie Technical Director: Kevin Yank

Technical Editor: Matthew Magain Cover Design: Alex Walker

Expert Reviewer: Simon Willison

Printing History:

First Edition: November 2004

Second Edition: May 2007

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embedded in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty Ltd, nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty Ltd

424 Smith Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9758419-8-3

Printed and bound in Canada

mailto:business@sitepoint.com

vThe CSS Anthology

About the Author

Rachel Andrew is a web developer and the director of web solutions provider

edgeofmyseat.com. When not writing code, she writes about writing code and is the coauthor

of several books promoting the practical usage of web standards alongside other everyday

tools and technologies. Rachel takes a common sense, real world approach to web standards,

with her writing and teaching being based on the experiences she has in her own company

every day.

Rachel lives in the UK with her partner Drew and daughter Bethany. When not working,

they can often be found wandering around the English countryside hunting for geocaches

and nice pubs that serve Sunday lunch and a good beer.

About the Technical Editor

Before joining the SitePoint team as a technical editor, Matthew Magain worked as a software

developer for IBM and also spent several years teaching English in Japan. He is the organizer

for Melbourne’s Web Standards Group,1 and enjoys swimming, listening to classical jazz,

and drinking Coopers Pale Ale, though not all at the same time. Matthew lives with his wife

Kimberley and their daughter Sophia.

About the Technical Director

As Technical Director for SitePoint, Kevin Yank oversees all of its technical publica­

tions—books, articles, newsletters and blogs. He has written over 50 articles for SitePoint on

technologies including PHP, XML, ASP.NET, Java, JavaScript and CSS, but is perhaps best

known for his book, Build Your Own Database Driven Website Using PHP & MySQL, also

from SitePoint. Kevin now lives in Melbourne, Australia. In his spare time he enjoys flying

light aircraft and learning the fine art of improvised acting.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles and

community forums.

1 http://webstandardsgroup.org/

http://webstandardsgroup.org/
http://www.sitepoint.com/
http:edgeofmyseat.com
http:ASP.NET
http://webstandardsgroup.org/

For Bethany

Table of Contents

Preface . xv

The Book’s Web Site . xviii

The SitePoint Forums . xviii

The SitePoint Newsletters . xviii

Conventions Used in this Book . xx

Who Should Read this Book? . xvi

What’s Covered in this Book? . xvi

Your Feedback . xix

Acknowledgments . xix

Chapter 1 Getting Started with CSS 1

Defining Styles with CSS . 1

CSS Selectors . 5

Summary . 11

Chapter 2 Text Styling and Other Basics 13

How do I replace tags with CSS? . 13

Should I use pixels, points, ems, or something else to set font

sizes? . 14

How do I set my text to display in a certain font? 23

How do I remove underlines from my links? . 24

How do I create a link that changes color when the cursor moves over

it? . 27

How do I display two different styles of link on one page? 29

How do I style the first item in a list differently from the others? 32

How do I add a background color to a heading? 34

The CSS Anthologyx

How do I style headings with underlines? . 35

How do I remove the large gap between an h1 element and the fol-

How do I remove page margins without adding attributes to the

How can I remove browsers’ default padding and margins from all

lowing paragraph? . 36

How do I highlight text on the page? . 39

How do I alter the line height (leading) on my text? 40

How do I justify text? . 42

How do I style a horizontal rule? . 43

How do I indent text? . 44

How do I center text? . 46

How do I change text to all capitals using CSS? . 47

How do I change or remove the bullets on list items? 49

How do I use an image for a list-item bullet? . 51

How do I remove the indented left-hand margin from a list? 52

How do I display a list horizontally? . 54

How do I add comments to my CSS file? . 55

<body> tag? . 55

elements? . 56

Summary . 58

Chapter 3 CSS and Images . 59

How do I use CSS to replace the deprecated HTML border attribute

How do I fix my background image in place when the page is

How do I add borders to images? . 60

on images? . 62

How do I set a background image for my page using CSS? 62

How do I position my background image? . 66

scrolled? . 70

xiThe CSS Anthology

Can I set a background image on any element? . 72

How do I place text on top of an image? . 75

How do I add more than one background image to my document? . . . 77

How can I use transparency in my pages? . 78

Summary . 81

Chapter 4 Navigation . 83

How do I use CSS to create rollover navigation without images or

Can I use CSS and lists to create a navigation system with subnaviga-

How do I replace image-based navigation with CSS? 84

How do I style a structural list as a navigation menu? 90

JavaScript? . 95

tion? . 97

How do I make a horizontal menu using CSS and lists? 103

How do I create button-like navigation using CSS? 106

How do I create tabbed navigation with CSS? . 110

How do I change the cursor type? . 119

How do I create rollovers in CSS without using JavaScript? 122

How can I create pure CSS drop-down menus? 126

Summary . 134

Chapter 5 Tabular Data . 135

How do I ensure that my tabular data is accessible as well as attract-

How do I add a border to a table without using the HTML border

How do I stop spaces appearing between the cells of my table when

How do I lay out spreadsheet data using CSS? . 136

ive? . 137

attribute? . 141

I’ve added borders using CSS? . 144

The CSS Anthologyxii

How do I display spreadsheet data in an attractive and usable

way? . 145

How do I display table rows in alternating colors?

How do I change a row’s background color when the cursor hovers

. 150

over it? . 153

How do I display table columns in alternating colors? 157

How do I display a calendar using CSS? . 161

Summary . 174

Chapter 6 Forms and User Interfaces 175

How do I style form elements using CSS? . 176

How do I apply different styles to fields in a single form? 180

How do I stop my form creating additional white space and line

breaks? . 183

How do I make a Submit button look like text? 184

How do I ensure that users with text-only devices understand how to

complete my form? . 185

How do I lay out a two-column form using CSS instead of a

table? . 189

How do I group related fields? . 194

How do I style accesskey hints? . 199

How do I use different colored highlights in a select menu? 203

I have a form that allows users to enter data as if into a spreadsheet.

How do I style it with CSS? . 205

How do I highlight the form field that the user clicks into? 212

Summary . 214

Chapter 7 Cross-browser Techniques 215

In which browsers should I test my site? . 216

xiiiThe CSS Anthology

I only have access to one operating system. How can I test in more of

these browsers? . 216

Is there a service that can show me how my site looks in various

Some of my content is appearing and disappearing in Internet Explorer

What do the error and warning messages in the W3C Validator

browsers? . 222

Can I install multiple versions of Internet Explorer on Windows? 224

How do I display a basic style sheet for really old browsers? 226

How do I hide some CSS from a particular browser? 230

How can I send different styles to a particular browser? 235

How do I achieve alpha transparency in Internet Explorer 6? 237

What is DOCTYPE switching and how do I use it? 243

I think I’ve found a CSS bug! What do I do? . 248

6! What should I do? . 251

mean? . 256

Summary . 258

Chapter 8 Accessibility and Alternative
Devices . 259

How do I test my site in a text-only browser? . 260

How do I test my site in a screen reader? . 262

How do I create style sheets for specific devices, such as screen readers

or WebTV? . 263

How do I create a print style sheet? . 265

How do I add alternative style sheets to my site? 276

How do I make a style sheet switcher? . 282

How do I use alternative style sheets without duplicating code? 287

Summary . 292

The CSS Anthologyxiv

Chapter 9 CSS Positioning and Layout 293

Can I make an inline element display as if it were block-level, and vice-

How do I make text wrap around an image without using the HTML

How do I align a site’s logo and slogan to the left and right without

How do I create a liquid, two-column layout with the menu on the

How do I decide when to use a class and when to use an ID? 294

versa? . 295

How do margins and padding work in CSS? . 298

align attribute? . 302

How do I stop the next element moving up when I use float? 305

using a table? . 309

How do I set an item’s position on the page using CSS? 315

How do I center a block on the page? . 320

left, and the content on the right? . 323

Can I reverse this layout and put the menu on the right? 331

How do I create a fixed-width, centered, two-column layout? 332

How do I create a full-height column? . 344

How do I add a drop shadow to my layout? . 347

How do I create a three-column CSS layout? . 350

How do I add a footer to a liquid layout? . 357

How do I display a thumbnail gallery without using a table? 360

How do I create boxes with rounded corners? . 367

Index . 377

Preface

When I’m not writing books like this one, I’m writing code. I make my living by

building web sites and applications as, I’m sure, will many readers of this book. I

use CSS to get jobs done every day, and I know what it’s like to struggle to get

something to work when the project needs to be finished the next morning.

When I talk to designers and developers who don’t use CSS, or use CSS only for

simple text styling, one thing that I hear over and over again is that they just don’t

have time to learn this whole new way of working. After all, tables and spacer GIFs

function, they get the job done, and they pay the bills.

I was lucky. I picked up CSS very early in the piece, and started to play with it be­

cause it interested me. As a result of that early interest, my knowledge grew as the

CSS techniques themselves were developed, and I can now draw on six years’ ex­

perience building CSS layouts every time I tackle a project.

In this book, I’ve tried to pass on the tricks and techniques that allow me to quickly

and easily develop web sites and applications using CSS.

You won’t find pages and pages of theory in this book. What you will find are

solutions that will enable you to do the cool stuff today, but which should also act

as starting points for your own creativity. In my experience, it’s far easier to learn

by doing than by reading, so while you can use this book to find solutions that will

help you get that client web site up and running by the deadline, please do experi­

ment with these examples and use them as a means to learn new techniques.

The book was designed to let you quickly find the answer to the particular CSS

problem with which you’re struggling at any given point in time. You don’t need

to read it from cover to cover—just grab the technique that you need, or that interests

you, and you’re set to go. Along with each solution, I’ve provided an explanation

to help you to understand why the technique works. This knowledge will allow

you to expand on, and experiment with, the technique in your own time.

I hope you enjoy this book! It has been great fun to write, and my hope is that it

will be useful as a day-to-day reference, as well as a tool that helps give you the

confidence to explore new CSS techniques.

The CSS Anthologyxvi

Who Should Read this Book?

This book is aimed at people who need to work with CSS—web designers and de­

velopers who have seen the cool CSS designs out there, but don’t have the time to

wade through masses of theory and debate in order to create a site. Each problem

is solved with a working solution that can be implemented as-is or used as a

springboard to creativity.

This book isn’t a tutorial; while Chapter 1 covers the very basics of CSS, and the

early chapters cover simpler techniques than those that follow, you will find the

examples easier to grasp if you have a basic grounding in CSS.

What’s Covered in this Book?
Chapter 1: Getting Started with CSS

This chapter does not follow the same format as the rest of the book—it’s simply

a quick CSS tutorial for anyone who needs to brush up on the basics of CSS. If

you’ve been using CSS in your own projects, you might want to skip this chapter

and refer to it on a needs basis if you find you want to look into basic concepts

in more detail.

Chapter 2: Text Styling and Other Basics

This chapter covers techniques for styling and formatting text in your documents;

font sizing, colors, and the removal of annoying extra whitespace around page

elements are explained as the chapter progresses. Even if you’re already using

CSS for text styling, you’ll find some useful tips here.

Chapter 3: CSS and Images

Combining CSS and images can create powerful visual effects. This chapter

looks at the ways in which you can do this, covering background images (not

just on the body), and positioning text with images, among other topics.

Chapter 4: Navigation

We all need navigation, and this chapter explains how to create it, CSS-style.

The topics of CSS replacements for image-based navigation, CSS “tab” naviga­

tion, combining background images with CSS text to create attractive and ac­

xviiThe CSS Anthology

cessible menus, and using lists to structure navigation in an accessible way are

addressed in this chapter.

Chapter 5: Tabular Data

While the use of tables for layout should be avoided wherever possible, tables

should be used for their real purpose: the display of tabular data, such as that

contained in a spreadsheet. This chapter will demonstrate techniques for the

application of tables to create attractive and usable tabular data displays.

Chapter 6: Forms and User Interfaces

Whether you’re a designer or a developer, it’s likely that you’ll spend a fair

amount of time creating forms for data entry. CSS can help you to create forms

that are attractive and usable; this chapter shows how we can do that while

bearing the key accessibility principles in mind.

Chapter 7: Cross-browser Techniques

How can we deal with older browsers, browsers with CSS bugs, and alternative

devices? These questions form the main theme of this chapter. We’ll also see

how to troubleshoot CSS bugs—and where to go for help—as well as discussing

the ways you can test your site in as many browsers as possible.

Chapter 8: Accessibility and Alternative Devices

It’s all very well that our pages look pretty to the majority of our site’s visit­

ors—but what about that group of people who rely upon assistive technology

such as screen magnifiers and screen readers? Or those users who prefer to

navigate the Web using the keyboard rather than a mouse, for whatever reason?

In this chapter we’ll see how we can make our site as welcoming and accessible

as possible for all users, not just able-bodied visitors with perfect vision.

Chapter 9: CSS Positioning and Layout

In this chapter, we explore the use of CSS to create beautiful and accessible

pages. We cover a range of different CSS layouts, and a variety of techniques,

which can be combined and extended upon to create numerous interesting page

layouts.

The CSS Anthologyxviii

The Book’s Web Site
Located at http://www.sitepoint.com/books/cssant2/, the web site that supports

this book will give you access to the following facilities.

The Code Archive
As you progress through this book, you’ll note file names above many of the code

listings. These refer to files in the code archive, a downloadable ZIP file that contains

all of the finished examples presented in this book. Simply click the Code Archive

link on the book’s web site to download it.

Updates and Errata
No book is error-free, and attentive readers will no doubt spot at least one or two

mistakes in this one. The Corrections and Typos page on the book’s web site will

provide the latest information about known typographical and code errors, and will

offer necessary updates for new releases of browsers and related standards.1

The SitePoint Forums
If you’d like to communicate with other designers about this book, you should join

SitePoint’s online community.2 The CSS forum, in particular, offers an abundance

of information above and beyond the solutions in this book, and a lot of fun and

experienced web designers and developers hang out there.3 It’s a good way to learn

new tricks, get questions answered in a hurry, and just have a good time.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters includ­

ing The SitePoint Tribune, The SitePoint Tech Times, and The SitePoint Design

View. Reading them will keep you up to date on the latest news, product releases,

trends, tips, and techniques for all aspects of web development. If nothing else,

you’ll get useful CSS articles and tips, but if you’re interested in learning other

1 http://www.sitepoint.com/books/cssant2/errata.php
2 http://www.sitepoint.com/forums/
3 http://www.sitepoint.com/launch/cssforum/

http://www.sitepoint.com/books/cssant2/
http://www.sitepoint.com/books/cssant2/errata.php
http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/cssforum/
http://www.sitepoint.com/launch/cssforum/
http://www.sitepoint.com/books/cssant2/errata.php
http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/cssforum/

xixThe CSS Anthology

technologies, you’ll find them especially valuable. Sign up to one or more SitePoint

newsletters at http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find an answer through the forums, or if you wish to contact us for any

other reason, the best place to write is books@sitepoint.com. We have an email

support system set up to track your inquiries, and friendly support staff members

who can answer your questions. Suggestions for improvements as well as notices

of any mistakes you may find are especially welcome.

Acknowledgments
Firstly, I’d like to thank the SitePoint team for making this book a reality, and for

being easy to communicate with despite the fact that our respective time zones saw

me going to bed as they started work each day. Particular thanks must go to Simon

Mackie, whose encouragement throughout the writing process was a great support.

Thanks also to both Simon Willison, who reviewed the first edition of this book,

and to Matthew Magain, who edited this second edition, not only for picking up

technical errors and inconsistencies, but for reminding me of different ideas and

approaches to the solutions.

To those people who are really breaking new ground in the world of CSS, those

whose ideas are discussed throughout this book, and those who share their ideas

and creativity with the wider community, thank you.

Thanks to Drew for his support and encouragement, for being willing to discuss

CSS concepts as I worked out my examples for the book, for making me laugh when

I was growing annoyed, and for putting up with our entire lack of a social life. Fi­

nally, thanks must go to my daughter Bethany, who is very understanding of the

fact that her mother is constantly at a computer, and who reminds me of what is

important every day. You both make so many things possible, thank you.

http://www.sitepoint.com/newsletter/
http:books@sitepoint.com

The CSS Anthologyxx

Conventions Used in this Book

You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Markup Samples
Any markup—be that HTML or CSS—will be displayed using a fixed-width font

like so:

<h1>A perfect summer's day</h1>

<p>It was a lovely day for a walk in the park. The birds

were singing and the kids were all back at school.</p>

If the markup forms part of the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

xxiThe CSS Anthology

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure you Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Chapter1
Getting Started with CSS
Cascading Style Sheets sound intimidating. The name alone conjures up images of

cryptic code and syntax too difficult for the layperson to grasp. In reality, however,

CSS is one of the simplest and most convenient tools available to web developers.

In this first chapter, which takes a different format than the rest of the book, I’ll

guide you through the basics of CSS and show you how it can be used to simplify

the task of managing a consistently formatted web site. If you’ve already used CSS

to format text on your sites, you may want to skip this chapter and jump straight to

the solutions that begin in Chapter 2.

Defining Styles with CSS
The basic purpose of CSS is to allow the designer to define style declarations

(formatting details such as fonts, element sizes, and colors), and to apply those

styles to selected portions of HTML pages using selectors—references to an element

or group of elements to which the style is applied.

Let’s look at a basic example to see how this is done.

The CSS Anthology2

Consider the following HTML document outline:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head>

<title>A Simple Page</title>

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

</head>

<body>

<h1>First Title</h1>

<p>…</p>

<h2>Second Title</h2>

<p>…</p>

<h2>Third title</h2>

<p>…</p>

</body>

</html>

This document contains three headings, which have been created using <h1> and

<h2> tags. Without CSS styling, the headings will be rendered using the browser’s

internal style sheet—the h1 heading will be displayed in a large font size, and the

h2 headings will be smaller than the h1, but larger than paragraph text. The document

that uses these default styles will be readable, but it probably won’t be as attractive

as you might like. We can use some simple CSS to change the look of these elements:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head>

<title>A Simple Page</title>

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

<style type="text/css">

h1, h2 {

 font-family: sans-serif;

 color: #3366CC;

}

</style>

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

3Getting Started with CSS

</head>

<body>

<h1>First Title</h1>

<p>…</p>

<h2>Second Title</h2>

<p>…</p>

<h2>Third Title</h2>

<p>…</p>

</body>

</html>

All the magic lies between the <style> tags in the head of the document, where we

define our light blue, sans serif font and apply it to all h1 and h2 elements in the

document. Don’t worry about the syntax—I’ll explain it in detail in a moment. We

don’t need to add anything to the markup itself—changes to the style definition at

the top of the page will affect all three headings, as well as any other headings that

might be added to the page at a later date.

Now that you have an idea of what CSS does, let me explain the different ways in

which you can use CSS styles in your HTML documents.

lnline Styles
The simplest method of adding CSS styles to your web pages is to use inline styles.

An inline style is applied via the style attribute, like this:

<p style="font-family: sans-serif; color: #3366CC;">

 Amazingly few discotheques provide jukeboxes.

</p>

As you can see, no selectors are required when we use an inline style—all we need

is a style declaration. The style attribute clearly identifies the element to which

the style is to be applied.

Inline styles have one major disadvantage: they can’t be reused. For example, if we

wanted to apply the style above to another p element, we would have to type it out

again in that element’s style attribute. Additionally, inline styles are located

alongside the page’s markup, making the code difficult to read and maintain.

The CSS Anthology4

Embedded Styles
Another approach you can take to applying CSS styles to your web pages is to use

the style element, as I did in the first example we looked at. Using this approach,

you can declare any number of CSS styles by placing them between the opening

and closing <style> tags, as follows:

<style type="text/css">

CSS Styles here

</style>

The type attribute specifies the language that you’re using to define your styles.

CSS is the only language in wide use at the time of writing, and is indicated with

the value text/css.

While it’s nice and simple, the <style> tag has one major disadvantage: if you want

to use a particular set of styles throughout your site, you’ll have to repeat those style

definitions within the style element at the top of every one of your site’s pages.

A more sensible alternative is to place those definitions into a plain text file, then

link your documents to that file. This external file is referred to as an external style

sheet.

External Style Sheets
An external style sheet is a file (usually given a .css filename) that contains a web

site’s CSS styles, keeping them separate from any one web page. Multiple pages can

link to the same .css file, and any changes you make to the style definitions in that

file will affect all the pages that link to it. This achieves the objective of creating

site-wide style definitions that I mentioned above.

To link a document to an external style sheet (say, styles.css), we simply place a link

element in the document’s header:

<link rel="stylesheet" type="text/css" href="styles.css" />

Remember our original example in which three headings shared a single style rule?

Let’s save that rule to an external style sheet, and link it to the web page like so:

5Getting Started with CSS

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head>

<title>A Simple Page</title>

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

<link rel="stylesheet" type="text/css" href="styles.css" />

</head>

<body>

<h1>First Title</h1>

<p>…</p>

<h2>Second Title</h2>

<p>…</p>

<h2>Third Title</h2>

<p>…</p>

</body>

</html>

The linked styles.css file contains the style definition:

h1, h2 {

 font-family: sans-serif;

 color: #3366CC;

}

As with an image file, you can reuse this styles.css file in any pages in which it’s

needed. Not only will it save you from re-typing the styles, it also ensures that your

headings display consistently across the entire site.

CSS Selectors
Every CSS style definition has two components:

■	 A list of one or more selectors, separated by commas, define the element or ele­

ments to which the style will be applied.

■	 The declaration block specifies what the style actually does.

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The CSS Anthology6

Figure 1.1. The components of a CSS rule: a list of selectors and a declaration block

In Figure 1.1, the selectors are h1 and h2, which means that the style should apply

to all h1 and h2 elements. The remainder of the style definition—the declaration

block—comprises the properties (fonts, colors, and other settings that should be

applied by the style), and the values these properties should take. In this section,

I’ll describe the basic CSS selector types and give you some examples of each; the

solutions in the rest of the book focus mainly on the different properties and the

values they can take.

Type Selectors
The most basic form of selector is a type selector, which we’ve already seen. By

naming a particular HTML element, you can apply a style rule to every occurrence

of that element in the document. Type selectors are often used to set the basic styles

that will appear throughout a web site. For example, the following style rule might

be used to set the default font for a web site:

body, p, td, th, div, blockquote, dl, ul, ol {

 font-family: Tahoma, Verdana, Arial, Helvetica, sans-serif;

 font-size: 1em;

 color: #000000;

}

This rather long selector comprises a list of elements for which the font, size, and

color will be styled according to the declaration block.

In theory, applying these styles to a page’s body element should be all we need to

do to have the styles appear across the site—all the other page elements appear

between the <body> tags, and should thus inherit the styles applied to the body. But

in reality, many browsers don’t properly apply style properties into tables and

7Getting Started with CSS

other child elements. Therefore, I’ve specified those other elements to ensure that

browsers make no mistakes in applying my new style rule.

Class Selectors
Assigning styles to elements is all well and good, but what happens if you want to

assign different styles to identical elements that occur in different places within

your document? This is where CSS classes come in.

Consider the following style, which turns all the paragraph text on a page blue:

p { color: #0000FF; }

Great! But what would happen if you had a sidebar on your page with a blue back­

ground? You wouldn’t want the text in the sidebar to display in blue as well—then

it would be invisible. What you need to do is define a class for your sidebar text,

then assign a CSS style to that class.

To create a paragraph of the sidebar class, first add a class attribute to the opening

tag:

<p class="sidebar">This text will be white, as specified by the

 CSS style definition below.</p>

Now we can write the style for this class:

p { color: #0000FF; }

.sidebar { color: #FFFFFF; }

This second rule uses a class selector to indicate that the style should be applied

to any element of the sidebar class. The period indicates that we’re naming a

class—not an HTML element.

Now, what would happen if there were links in your sidebar? By default, they’d be

rendered just like any other links in your page; however, add a class="sidebar"

attribute to the link element, and they’ll turn white, too:

<p class="sidebar">This text will be white, <a class="sidebar"

 href="link.html">and so will this link.</p>

The CSS Anthology8

That’s fairly neat, but what if you wanted to make the links stand out a bit more?

Perhaps you want to display them in bold text? Adding the bold text attribute to

the sidebar class will turn your whole sidebar bold, which would be no good. You

need a CSS selector that selects links of the sidebar class only, and, by combining

a type selector with a class selector, you can do exactly that:

p { color: #0000FF; }

.sidebar { color: #FFFFFF; }

a.sidebar:link, a.sidebar:visited { font-weight: bold; }

Note that we’ve also used the :link and :visited pseudo-classes here—we’ll look

at pseudo-classes in more detail later in this chapter.

If you were to add these style rules to your style sheet and reload the page in your

browser, you’d see that your sidebar links display in a font that’s white and

bold—both of the styles that we defined above for the sidebar class are applied to

our sidebar links. If we were to specify a different color in the third style, however,

links would adopt that new color, because the third selector is more specific, and

CSS style rules are applied in order of increasing selector specificity.

Incidentally, the process of applying multiple styles to a single page element is

called cascading, and is where Cascading Style Sheets got their name.

ID Selectors
In contrast with class selectors, ID selectors are used to select one particular element,

rather than a group of elements. To use an ID selector, first add an id attribute to

the element you wish to style. It’s important that the ID is unique within the docu­

ment:

<p id="tagline">This paragraph is uniquely identified by the ID

 "tagline".</p>

To reference this element by its ID selector, we precede the id with a hash (#). For

example, the following rule will make the above paragraph white:

#tagline { color: #FFFFFF; }

9Getting Started with CSS

ID selectors can be used in combination with the other selector types. The following

style, for example, applies to elements with a class of new appearing within the

paragraph that has an id of tagline:

#tagline .new {

 font-weight: bold;

 color: #FFFFFF;

}

Descendant Selectors
If your sidebar consisted of more than just one paragraph of text, you could add the

class to every opening p tag in the sidebar. However, it would be much neater to

apply an id of sidebar to a container element, and set the color of every p element

within that container to white, with a single CSS style rule. This is what descendant

selectors are for.

Here’s the new CSS:

p { color: #0000FF; }

.sidebar p { color: #FFFFFF; }

And here’s the updated HTML:

<div class="sidebar">

 <p>This paragraph will be displayed in white.</p>

 <p>So will this one.</p>

</div>

As you can see, a descendant selector comprises a list of selectors (separated by

spaces) that matches a page element (or group of elements) “from the outside in.”

In this case, because our page contains a div element that has a class of sidebar,

the descendant selector .sidebar p refers to all p elements inside that div.

Child Selectors
The descendant selector matches all elements that are descendants of the parent

element, including elements that are not direct descendants.

The CSS Anthology10

Consider the following markup:

<div class="sidebar">

 <p>This paragraph will be displayed in white.</p>

 <p>So will this one.</p>

 <div class="tagline">

 <p>If we use a descendant selector, this will be white too.

 But if we use a child selector, it will be blue.</p>

 </div>

</div>

In this example, the descendant selector we saw in the previous section would

match the paragraphs that are nested directly within div.sidebar as well as those

inside div.tagline. If you didn’t want this behavior, and you only wanted to style

those paragraphs that were direct descendants of div.sidebar, you’d use a child

selector. A child selector uses the > character to specify a direct descendant.

Here’s the new CSS, which turns only those paragraphs directly inside .sidebar

(but not those within .tagline) white:

p { color: #0000FF; }

.sidebar>p { color: #FFFFFF; }

Internet Explorer 6 Doesn’t Support the Child Selector

Unfortunately, Internet Explorer 6 doesn’t support the child selector, so until usage

of that browser decreases significantly, you should only use the child selector to

specify non-essential styles. If, as a result of using a child selector, the information

on your page becomes unreadable (or the layout suffers unacceptably), try to use

a different method (such as an ID selector) to apply the style.

Pseudo-class Selectors
The formatting options available for the a element in HTML are more extensive

than those on offer for most other elements. By specifying link, vlink, and alink

attributes in the <body> tag, you can set the colors for the various states of the links

in your page (unvisited, visited, and being clicked on, respectively).

11 Getting Started with CSS

CSS provides its own way of setting these styles, and adds a fourth state that’s

applied when the cursor hovers over the link. Consider the following example:

a:link { color: #0000FF; }

a:visited { color: #FF00FF; }

a:hover { color: #00CCFF; }

a:active { color: #FF0000; }

This code contains four CSS style definitions. Each of the selectors uses what is

termed a pseudo-class of the a element.

■	 The first, link, applies to unvisited links only, and specifies that they should

be blue.

■	 The second, visited, applies to visited links, and makes them magenta.

■	 The third style definition, hover, overrides the first two by making links light

blue when the cursor is moved over them, whether they’ve been visited or not.

■	 The final style definition makes links red when they’re clicked on.

The order in which you specify these pseudo-class selectors in your style sheet is

important; because active appears last, it overrides the first three, so it will take

effect whether the links have been visited or not, and whether the cursor is over

them or not.

The hover and active states are officially known as dynamic pseudo-class selectors,

as they only occur when the user interacts in some way with the element, by

clicking on the link or holding the cursor over it.

Summary
This chapter has given you a taste of CSS and its usage at the most basic level. If

you haven’t used CSS before, but have an understanding of the concepts discussed

in this chapter, you should be able to start using the examples in this book.

The examples in the early chapters are somewhat simpler than those found near

the end, so, if you haven’t worked with this technology before, you might want to

begin with the earlier chapters. These will build on the knowledge you gained in

this chapter to get you using and, I hope, enjoying CSS.

Chapter2
Text Styling and Other Basics
This chapter explores the applications of CSS for styling text, and covers a lot of

CSS basics as well as answering some of the more frequently asked questions about

these techniques. If you’re new to CSS, these examples will introduce you to a

variety of properties and their usages, and will give you a solid foundation from

which to start your own experiments. For those who are already familiar with CSS,

this chapter will serve as a quick refresher in those moments when you can’t quite

remember how to achieve a certain effect.

The examples I’ve provided here are well supported across a variety of browsers

and versions, though, as always, testing your code in different browsers is important.

While there may be small inconsistencies or a lack of support for these techniques

in older browsers, none of the solutions presented here should cause you any serious

problems.

How do I replace tags with CSS?
Once upon a time, before CSS was widely supported, web developers styled the

text on their pages using the tag. However, now that the use of CSS to style

The CSS Anthology14

text is supported by version 4 browsers and above, there’s no longer a compelling

reason to continue to use tags.

Here’s an example: if you used tags, you’d need to set the style for each

paragraph on your page, like so:

<p><font color="#800080" face="Verdana, Geneva, Arial, Helvetica,

sans-serif">These stuffed peppers are lovely as a starter, or as

a side dish for a Chinese meal. They also go down well as part

of a buffet and even children seem to like them.</p>

Solution
Using CSS, you can specify in the style sheet the color and font you want to apply

to the paragraph. To replace the tags in the example above, we’d set the p

element’s color property to #800080, and set its font-family to Verdana, Geneva,

Arial, Helvetica, sans-serif:

basicfont.css (excerpt)

p {
 color: #800080;
 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
}

Now, every time you add to your document text enclosed by <p> tags, it will take

on this style—no extra markup is required. It also makes life a lot easier if your

client suddenly wants to change the font from Verdana to Times on 100 pages of

the site!

Should I use pixels, points, ems, or
something else to set font sizes?
You can size text in CSS using the font-size property, like so:

font-size: 12px;

15Text Styling and Other Basics

We’ve used pixel sizing here, but the font-size property can take a variety of other

values. Before you can decide which to use, you’ll need to know something of the

relative merits of each option.

Solution

Sizing Fonts Using Units of Measurement
Table 2.1 identifies the units that you can use to size fonts.

Table 2.1. Units available for setting font size

Corresponding Units Unit Identifier

pointspt

picaspc

pixelspx

emsem

exesex

percentages %

Let’s look at each of these units in turn.

Points and Picas

p {

 font-size: 10pt;

}

You should avoid using points and picas to style text for display on screen. This

unit is an excellent way to set font sizes for print design, as the point measurement

was created for that purpose. A point has a fixed size of 1/72 of an inch, while a

pica is one-sixth of an inch. A printed document whose fonts are specified using

these units will appear exactly as you intended—after all, one-sixth of an inch is

the same physical measurement whether you’re printing on an A4 page or a billboard.

However, computers cannot accurately predict the physical size at which elements

will appear on the monitor, so they guess—and guess badly—at the size of a point

or pica, with results that vary between platforms.

The CSS Anthology16

If you’re creating a print style sheet, or a document that’s intended for print—not

on-screen—viewing, points and picas are the units to use. However, a general rule

of thumb indicates that we should avoid them when designing for the Web.

Pixels

p {

 font-size: 12px;

}

Many designers like to set font sizes in pixel measurements, as this unit makes it

easy to achieve consistent text displays across various browsers and platforms.

However, pixel measurements ignore any preferences users may have set in their

own browsers and, in many browsers, font sizes that the designer has dictated in

pixels cannot be resized by users. This limitation presents a serious accessibility

problem for users who need to make text larger in order to read it clearly.

While pixels may seem like the easiest option for setting font sizes, pixel measure­

ments should be avoided if another method can be used, particularly for large blocks

of content. If you’re creating a document for print, or creating a print style sheet,

you should avoid pixels entirely. Pixels have no meaning in the world of print and,

like the application of points to the on-screen environment, when print applications

are provided with a pixel measurement, they will simply try to guess the size at

which the font should appear on paper—with erratic results.

Ems

The em is a relative font measurement: one em is equal to the height of the capital

letter M in the default font size. Where CSS is concerned, 1em is seen to be equal to

the user’s default font size, or the font size of the parent element when it is set to

something other than the default.

If you use ems (or any other relative unit) to set all your font sizes, users will be

able to resize the text, which will comply with the text size preferences they have

set in their browsers. As an example, let’s create a declaration that sets the text

within a p element to display at a size of 1em:

17Text Styling and Other Basics

p {

 font-size: 1em;

}

A visitor who uses Internet Explorer 6, in which the text size is set to Medium, will

see the paragraph shown in Figure 2.1 when he or she views the page.

Figure 2.1. Viewing the display when the font-size is set to 1em and text size is Medium

If the users have set the text size to Largest, the 1em text will display as shown in

Figure 2.2.

Figure 2.2. Viewing the display when the font-size is set to 1em and text size is set to Largest

It’s true that using ems to size text gives you less control over the way users view

the document. However, this approach means that users who need a very large font

The CSS Anthology18

size, for instance, can read your content—which, presumably, is the reason why

you’re publishing the text to the page.

Em values can be set using decimal numbers. For example, to display text at a size

10% smaller than the user’s default (or the font size of its parent element), you could

use this rule:

p {

 font-size: 0.9em;

}

To display the text 10% larger than the default or inherited size, you’d use this rule:

p {

 font-size: 1.1em;

}

Exes

The ex is a relative unit measurement that corresponds to the height of the lowercase

letter x in the default font size. In theory, if you set the font-size of a paragraph

to 1ex, the uppercase letters in the text will display at the height at which the

lowercase letter x would have appeared if the font size had not been specified (and

the lowercase letters will be sized relative to those uppercase letters).

Unfortunately, modern browsers don’t yet support the typographical features needed

to determine the size of an ex precisely—they usually make a rough guess for this

measurement. For this reason, exes are rarely used at the time of writing.

Percentages

p {

 font-size: 100%;

}

As with ems and exes, font sizes that are set in percentages will honor users’ text

size settings, and can be resized by the user. Setting the size of a p element to 100%

will display your text at users’ default font size settings (as will setting the font size

to 1em). Decreasing the percentage will make the text smaller:

19Text Styling and Other Basics

p {

 font-size: 90%;

}

Increasing the percentage will make the text larger:

p {

 font-size: 150%;

}

Sizing Fonts Using Keywords
As an alternative to using numerical values to set text sizes, you can use absolute

and relative keywords.

Absolute Keywords

We can use any of seven absolute keywords to set text size in CSS:

■ xx-small

■ x-small

■ small

■ medium

■ large

■ x-large

■ xx-large

These keywords are defined relative to each other, and browsers implement them

in different ways. Most browsers display medium at the same size as unstyled text,

with the other keywords resizing text accordingly, to varying degrees. Internet Ex­

plorer 5 (and version 6, depending on the document type), however, treats small

as being the same size as unstyled text.

These keyword measurements are considered absolute in that they don’t inherit

from any parent element. Yet, unlike the absolute values provided for height, such

as pixels and points, they do allow the text to be resized in the browser, and will

honor the user’s browser settings. The main problem with using these keywords is

the fact that, for example, x-small-sized text may be perfectly readable in one

browser, and minuscule in another.

The CSS Anthology20

Relative Keywords

Text sized using relative keywords—larger and smaller—takes its size from the

parent element in the same way that text sized with em and % does. Therefore, if

you set the size of your p element to small using absolute keywords, and decide

that you want emphasized text to display comparatively larger, you could add the

following to the style sheet:

relative.css

p {
 font-size: small;
}
em {
 font-size: larger;
}

The following markup would display as shown in Figure 2.3, because the text

between the and tags will display larger than its parent, the p element:

relative.html (excerpt)

<p>These stuffed peppers are lovely as a starter, or as a
 side dish for a Chinese meal. They also go down well as part of
 a buffet and even children seem to like them.</p>

Figure 2.3. The emphasized text displaying larger than its containing paragraph

21 Text Styling and Other Basics

Relative Sizing and Inheritance
When you use any kind of relative sizing, remember that the element you’re consid­

ering will inherit its starting size from its parent element, then adjust its size accord­

ingly. This is fairly easy to understand in layouts in which elements are nested in

a simple manner; however, this inheritance pattern can become problematic in

nested-table layouts in which the parent element is not always obvious—things can

seem to inherit very strangely indeed! The following example demonstrates this

point.

My style sheet contains the following style rule, which sets text in a td element to

display at 80%. This is slightly smaller than users’ default font sizes, but they will

be able to resize the text:

nesting.css

td {
 font-size: 80%;
}

On a page in which there are no nested table cells, the text will display consistently

at that slightly smaller size. However, in a nested-table layout like that defined in

the markup below, the text within each nested table will display at 80% of the font

size of its containing table:

nesting.html (excerpt)

<table>
 <tr>
 <td>This is a table
 <table>
 <tr>
 <td>This is the second table
 <table>
 <tr>
 <td>This is the third table</td>

 </tr>
 </table>

 </td>
 </tr>

 </table>

The CSS Anthology22

</td>

 </tr>

</table>

This markup will display as in Figure 2.4. As you can see, the text becomes progress­

ively smaller in each nested table.

Figure 2.4. Using relative font sizing within nested tables

Discussion
When you’re deciding which method of text sizing to use, it’s best to select one that

allows all users to resize the text, and that ensures that the text complies with the

settings users have chosen within their browsers. Relative font sizing tends to work

well with CSS layouts and simple table-based layouts, but it can be tricky to imple­

ment in a complex nested-table layout because of the way the elements inherit sizing.

However, in order to achieve even a basic level of accessibility, enabling users to

set fonts to a comfortable level is necessary.

Designing your layout with resizable text in mind also allows you to avoid an issue

that’s often seen in browsers that do allow the resizing of pixels, on pages where

designers have assumed that setting font sizes in pixels will allow them to fix the

heights of containers, or place text on top of a fixed-height image. This approach

will work in Internet Explorer, which doesn’t resize text whose size is set in pixels,

but may result in a complete mess of overflowing text in Firefox, where the heights

of boxes containing text cannot ever be known.

23Text Styling and Other Basics

How do I set my text to display in a
certain font?
Solution
Specify the typeface that your text will adopt using the font-family property, like

so:

p {

 font-family: Verdana;

}

Discussion
As well as specific fonts, such as Verdana or Times, CSS allows the specification

of some more generic font families:

■ serif

■ sans-serif

■ monospace

■ cursive

■ fantasy

When you specify fonts, it’s important to remember that users probably don’t have

the fonts you have on your computer. If you define a font that they don’t have, your

text will display in their browsers’ default fonts, regardless of what you’d have

preferred.

To avoid this eventuality, you can simply specify generic font names and let users’

systems decide which font to apply. For instance, if you want your document to

appear in a sans-serif font such as Arial, you could use the following style rule:

p {

 font-family: sans-serif;

}

The CSS Anthology24

Now, you’ll probably want to have more control than this over the way your site

displays—and you can. It’s possible to specify both font names and generic fonts

in the same declaration block. Take, for example, the following style rule for the p

element:

p {

 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;

}

Here, we’ve specified that if Verdana is installed on the system, it should be used;

if it’s not installed, the browser is instructed to see if Geneva is installed; failing

that, the computer will look for Arial, then Helvetica. If none of these fonts are

available, the browser will use that system’s default sans-serif font.

Fonts that you can feel fairly confident to use are:

Windows	 Arial, Lucida, Impact, Times New Roman, Courier New, Tahoma, Comic

Sans, Verdana, Georgia, Garamond

Mac	 Helvetica, Futura, Bodoni, Times, Palatino, Courier, Gill Sans, Geneva,

Baskerville, Andale Mono

This list reveals the reason why we chose the fonts we specified in our style rule:

we begin by specifying our first preference, a common Windows font (Verdana),

then list a similar Mac font (Geneva). We then follow up with other fonts that would

be usable if neither of these fonts was available.

How do I remove underlines from my links?
The widely accepted default visual indication that text on a web page links to an­

other document is that it’s underlined and displays in a different color from the

rest of the text. However, there may be instances in which you want to remove that

underline.

Solution
We use the text-decoration property to remove the underlines from link text. By

default, the browser will set the text-decoration of an a element to underline.

25Text Styling and Other Basics

To remove the underline, simply set the text-decoration property for the link to

none:

text-decoration: none;

The CSS used to create the effect shown in Figure 2.5 is as follows:

textdecoration.css

a:link, a:visited {
 text-decoration: none;
}

Figure 2.5. Using text-decoration to create links that aren’t underlined

Discussion
In addition to underline and none, there are other values for text-decoration that

you can try out:

■ overline

■ line-through

■ blink

The CSS Anthology26

You can combine these values. For instance, should you wish to have an underline

and overline on a particular link, as illustrated in Figure 2.6, you’d use the following

style rule:

textdecoration2.css

a:link, a:visited {
 text-decoration: underline overline;
}

Figure 2.6. Combining text-decoration values to create links with underlines and overlines

Avoid Applying Misleading Lines

You can use the text-decoration property to apply underlines to text that’s

not a link, but be wary of doing this. The underlining of links is such a widely-

accepted convention that users tend to think that any underlined text is a link to

another document.

When is Removing Underlines a Bad Idea?
Underlining links is a standard convention followed by all web browsers and,

consequently, users expect to see links underlined. Removing the underline from

links that appear within text can make it very difficult for people to realize that

these words are in fact links, and not just highlighted text. I’d advise against remov­

ing the underlines from links within text. There are other ways in which you can

27Text Styling and Other Basics

style links so they look attractive, and removing the underline is rarely, if ever,

necessary.

Links that are used as part of a menu, or appear in some other situation in which

the text is quite obviously a link—for instance, where the text is styled with CSS

to resemble a graphical button—are a different story. If you wish, you can remove

the underline from these kinds of links, because it should be obvious from their

context that they’re links.

How do I create a link that changes color
when the cursor moves over it?
One attractive link effect changes the color or otherwise alters the appearance of a

link when the cursor is moved across it. This effect can be applied to great advantage

on navigation menus created with CSS, but it can also be used on links within reg­

ular paragraph text.

Solution
To create this effect, we need to style the :hover and :active dynamic pseudo-

classes of the anchor element differently from its other pseudo-classes.

Let’s look at an example. Here’s a typical style rule that applies the same declarations

to all of an anchor element’s pseudo-classes:

textdecoration3.css

a:link, a:visited, a:hover, a:active {
 text-decoration: underline;
 color: #6A5ACD;
 background-color: transparent;
}

When this style sheet is applied, our links will display in the blue color #6A5ACD

with an underline, as shown in Figure 2.7.

The CSS Anthology28

Figure 2.7. Using the same declaration for all of the links’ pseudo-classes

To style our :hover and :active pseudo-classes differently, we need to remove

them from the declaration with the other pseudo-classes and give them their own

separate declaration. In the CSS below, I decided to apply an overline in addition

to the underline. I’ve also set a background color and made the link’s text a darker

color; Figure 2.8 shows how these styles display in a browser:

textdecoration4.css

a:link, a:visited {
 text-decoration: underline;
 color: #6A5ACD;
 background-color: transparent;
}
a:hover, a:active {
 text-decoration: underline overline;
 color: #191970;
 background-color: #C9C3ED;
}

As you’ve probably realized, you can style the anchor’s other pseudo-classes separ­

ately, too. In particular, you might like to apply a different style to links that users

have visited. To do so, you’d simply style the :visited pseudo-class separately.

29Text Styling and Other Basics

Figure 2.8. Moving the cursor over a link to which a hover style is applied

When styling pseudo-classes, take care that you don’t change either the size or

weight (or boldness) of the text. If you do, you’ll find that your page appears to

jiggle, as the surrounding content has to move to make way for the larger text to

display when your cursor hovers over the link.

Ordering Pseudo-class Declarations

The anchor pseudo-classes should be declared in the following order: link,

visited, hover, active. If they aren’t, you may find that they don’t work as

you intended. One way to remember this order is the mnemonic: LoVeHAte.

How do I display two different styles of
link on one page?
The previous solution explained how to style the different selectors of the anchor

element, but what if you want to use different link styles within the same document?

Perhaps you want to display links without underlines in your navigation menu, yet

make sure that links within the body content are easily identifiable. Or maybe part

of your document has a dark background color, so you need to use a light-colored

link style there.

The CSS Anthology30

Solution
To demonstrate how to create multiple styles for links displayed on one page, let’s

take an example in which we’ve already styled the regular links:

linktypes.css (excerpt)

a:link, a:visited {
 text-decoration: underline;
 color: #6A5ACD;
 background-color: transparent;
}

a:hover, a:active {
 text-decoration: underline overline;
 color: #191970;
 background-color: #C9C3ED;
}

These should be taken as the default link styles—they reflect the way links will

normally be styled within your documents. The first rule makes the link blue, so if

an area of our page has a blue background, the links that appear in that space will

be unreadable. We need to create a second set of styles for links in that area.

First, let’s create a class or an id for the element that will contain the differently

colored links. If the container is already styled with CSS, it may already have a

class or id that we can use. Suppose that our document contains the following

markup:

linktypes.html (excerpt)

<div class="boxout">
 <p>Visit our online store, for all your
 widget needs.</p>

</div>

We need to create a style rule that affects any link appearing within an element of

class boxout:

31 Text Styling and Other Basics

linktypes.css (excerpt)

.boxout {
 color: #FFFFFF;
 background-color: #6A5ACD;
}
.boxout a:link, .boxout a:visited {
 text-decoration: underline;
 color: #E4E2F6;
 background-color: transparent;
}
.boxout a:hover, .boxout a:active {
 background-color: #C9C3ED;
 color: #191970;
}

As you can see in Figure 2.9, this rule will display all links in the document as per

the first style except those that appear within the boxout—these links will be dis­

played in the lighter color.

Figure 2.9. Using two different link styles in one document

The CSS Anthology32

How do I style the first item in a list
differently from the others?
Frequently, designers find that we need to style the first of a set of items—be they

list items or a number of paragraphs within a container—differently from the rest

of the set. One way to achieve this would be to assign a class to the first item, and

style that class differently from the other items. There is, however, a more elegant

way to create this effect in modern browsers: using the pseudo-class selector first-

child.

Solution
Here’s a simple list of items marked up as an unordered list:

firstchild.html (excerpt)

 Brie
 Cheddar
 Red Leicester
 Shropshire Blue

Using first-child
To change the color of the first item in the list without affecting its neighbors, we

can use the first-child selector. This allows us to target the first element within

the ul element, as shown overleaf; the result is shown in Figure 2.10:

firstchild.css (excerpt)

li:first-child {
 color: red;
}

33Text Styling and Other Basics

Figure 2.10. Displaying the first list item in red text

Unfortunately first-child is not supported by Internet Explorer 6, so until the

number of visitors using this browser to view your site becomes negligible, you’ll

need to find another method to create this effect. One such method is to use a class

selector.

Using a Class Selector
To create this effect in Internet Explorer 6, we add a class or id attribute to the

element that we wish to style differently. For this example, let’s use a class:

firstchildwithclass.html (excerpt)

 <li class="unusual">Brie
 Cheddar
 Red Leicester
 Shropshire Blue

Once this in place, we create a style rule to implement the desired effect:

firstchildwithclass.css (excerpt)

li.unusual {
 color: red;
}

The CSS Anthology34

How do I add a background color
to a heading?
CSS allows us to add a background color to any element, including a heading.

Solution
Below, I’ve created a CSS rule for all the level-one headings in a document. The

result is shown in Figure 2.11.

headingcolor.css (excerpt)

h1 {
 background-color: #ADD8E6;
 color: #256579;
 font: 1.6em Verdana, Geneva, Arial, Helvetica, sans-serif;
 padding: 0.2em;
}

Figure 2.11. Displaying a heading with a background color

Make Way for Color!

When you add a background to a heading, you may also want to adjust the padding

so that there’s space between the heading text and the edge of the colored area,

as I’ve done in this example.

35Text Styling and Other Basics

How do I style headings with underlines?
Solution
There are two ways in which you can add an underline to your text. The simplest

is to use the text-decoration property that we encountered earlier in this chapter

in “How do I remove underlines from my links?”. This method will allow you to

apply to text an underline that’s the same color as the text itself, as this code, and

Figure 2.12, show:

headingunderline.css (excerpt)

h1 {
 font: 1.6em Verdana, Geneva, Arial, Helvetica, sans-serif;
 text-decoration: underline;
}

Figure 2.12. Adding an underline to a heading using text-decoration

You can also create an underline effect by adding a bottom border to the heading.

This solution, which produces the result shown in Figure 2.13, is more flexible in

that it allows you to separate the underline from the heading with the use of padding,

and you can change the color of the underline so that it’s different than that of the

text.

The CSS Anthology36

A heading to which this effect is applied is also less likely to be confused with un­

derlined link text than is a heading whose underline is created using the

text-decoration property. However, this effect may display with slight inconsist­

encies in different browsers, so you’ll need to test it to make sure the effect looks

reasonable on the browsers your visitors may use. Here’s the style rule you’ll need:

headingunderline2.css

h1 {
 font: 1.6em Verdana, Geneva, Arial, Helvetica, sans-serif;
 padding: 0.2em;
 border-bottom: 1px solid #aaaaaa;
}

Figure 2.13. Creating an underline effect using a bottom border

How do I remove the large gap between an
h1 element and the following paragraph?
By default, browsers render a gap between all heading and paragraph elements. The

gap is produced by default top and bottom margins that browsers apply to these

elements. The margin on the heading shown in Figure 2.14 reflects the default value.

This gap can be removed using CSS.

37Text Styling and Other Basics

Figure 2.14. The default heading and paragraph spacing

Solution
To remove all space between a heading and the paragraph that follows it, you must

remove the bottom margin from the heading as well as the top margin from the

paragraph. In modern browsers—including Internet Explorer 7—we can do this

through CSS, using an adjacent selector. However, to achieve the same effect in

older browsers, we need to revert to other techniques that are better supported.

Using an Adjacent Selector
An adjacent selector lets you target an element that follows another element, as long

as both share the same parent. In fact, you can use adjacent selectors to specify an

element that follows several other elements, not just one—the element to which the

style is applied is always the last element in the chain. If you’re confused, don’t

worry: this concept will become a lot clearer once we’ve seen it in action.

The following style rules remove the top margin from any paragraph that immediately

follows a level-one heading. Note that the top margin is not removed from the

h1—just the paragraph that follows it:

headingnospace.css (excerpt)

h1 {
 font: 1.6em Verdana, Geneva, Arial, Helvetica, sans-serif;
 margin-bottom: 0;

The CSS Anthology38

}

h1+p {

 margin-top: 0;

}

Figure 2.15 shows the display of the original page once this rule is applied.

Figure 2.15. Using an adjacent selector to change the heading display

As you can see, the first paragraph that follows the h1 no longer has a top margin;

all subsequent paragraphs, however, retain their top margins.

As I mentioned, adjacent selectors only work with newer browsers—for example,

the only version of Internet Explorer that includes support for the adjacent selector

is Internet Explorer 7. In some cases, you might decide that it’s acceptable for users

of older browsers to see a gap between the heading and the text. But if this isn’t the

case, and you want to remove the margins from the page that’s seen by users of older

browsers, you have a couple of options.

You can make use of class selectors, as we did in “How do I display two different

styles of link on one page?”, to apply a margin of 0 to that class. If you’ve read that

solution, you should find it fairly straightforward to implement this approach. An­

other option is to apply a negative margin to the heading, which I’ll explain next.

39Text Styling and Other Basics

Applying a Negative Margin
In CSS, margins can take either a positive or a negative value. Padding, however,

can only take a positive value.

Applying a negative margin to the heading is another way to remove the space

between the heading and the first paragraph. The style rule below produces a sim­

ilar effect to the one we saw in Figure 2.15:

h1 {

 font: 1.6em Verdana, Geneva, Arial, Helvetica, sans-serif;

 margin-bottom: -0.6em;

}

How do I highlight text on the page?
Before CSS came along, we might have used tags to highlight an important

term on a page, or to identify the search terms visitors had used to locate our docu­

ment through a search engine. CSS makes the process much easier.

Solution
CSS allows you to create a class for the highlighting style, and apply it by wrapping

the highlighted text with tags that apply the class. For example, in the fol­

lowing paragraph, we’ve wrapped a phrase in tags that apply the class

highlight:

hilite.html (excerpt)

<p>These stuffed peppers are lovely
as a starter, or as a side dish for a Chinese meal. They also
 go down well as part of a buffet, and even children seem to
like them.</p>

The highlight class is shown overleaf; the highlighted section will display as

shown in Figure 2.16:

The CSS Anthology40

hilite.css (excerpt)

.highlight {
 background-color: #FFFFCC;
 color: #B22222;
}

Figure 2.16. Highlighting text with CSS

How do I alter the line height (leading)
on my text?
One of the great advantages of using CSS rather than tags is that it gives you

far more control over the way text looks on the page. In this solution, we’ll alter the

leading of the text in your document.

Solution
If the default spacing between the lines of text on your page looks a little narrow,

you can change it with the line-height property:

leading.css

p {
 font: 0.9em Verdana, Geneva, Arial, Helvetica, sans-serif;
 line-height: 2.0;
}

41 Text Styling and Other Basics

The result is shown in Figure 2.17.

Figure 2.17. Altering leading using the line-height property

Easy! Just be careful not to space the text out so much that it becomes difficult to

read.

No Units?

You’ll notice that we haven’t specified any units of measurement in this ex­

ample—the value of 2.0 is a ratio. You can specify a value for line-height using

standard CSS units of measurement, such as ems or pixels, but doing so breaks

the link between the line height and the font size for child elements.

For example, if the example above contained a span that set a large font-size,

the line height would scale up proportionally, maintaining the same ratio, because

the line-height of the paragraph was set to the numerical value 2.0. If, however,

line-height was set to 2em or 200%, the span would inherit the actual line

height, not the ratio, and the large font size would not affect the line height of the

span. Depending on the effect you’re going for, this may actually be a desirable

result.

The CSS Anthology42

How do I justify text?
When you justify text, you alter the spacing between the words so that both the

right and left margins are straight. You can create this effect easily using CSS.

Solution
You can justify paragraph text with the help of the text-align property, like so:

justify.css

p {
 text-align: justify;
 font: 1em Verdana, Geneva, Arial, Helvetica, sans-serif;
 line-height: 2.0;
}

Figure 2.18 shows the effect of setting text-align to justify.

Figure 2.18. Justifying text using text-align

43Text Styling and Other Basics

Discussion
The other values for text-align are:

right aligns the text to the right of the container

left aligns the text to the left of the container

center centers the text in the container

How do I style a horizontal rule?
In general, you should avoid including in your markup elements that are purely

presentational, such as the horizontal rule (hr). A document that is structured se­

mantically is easier to maintain, loads faster, and is optimized for search engine

indexing. A similar effect to that produced by the hr element can usually be achieved

by applying borders to existing elements.

However, there are occasions when using an hr is either the best way to achieve

the desired effect, or is necessary to serve unstyled content to an older browser that

doesn’t support CSS.

Solution
You can change the color, height, and width of a horizontal rule with CSS. However,

you’ll need to watch out for some inconsistencies between browsers. For instance,

in the example below, I’ve used the same values for color and background-color

because Mozilla-based browsers color the rule using background-color, while In­

ternet Explorer uses color:

hrstyle.css (excerpt)

hr {
 border: none;
 background-color: #ADD8E6;
 color: #ADD8E6;
 height: 1px;
 width: 80%;
}

The CSS Anthology44

The result of this rule can be seen in Figure 2.19.

Figure 2.19. Changing the color, height, and width of a horizontal rule

How do I indent text?
Solution
To indent text, we apply to its container a rule that sets a padding-left value, like

this:

indent.html (excerpt)

<p>After a time she threw it up so high that she missed catching
it as it fell, and the ball bounded away, and rolled along upon
the ground till at last it fell down into the spring.</p>

<p class="indent">The princess looked into the spring after her
ball, but it was very deep, so deep that she could not see the
bottom of it. Then she began to bewail her loss, and said, "Alas!
If I could only get my ball again, I would give all my fine
clothes and jewels, and everything that I have in the world."</p>

45Text Styling and Other Basics

indent.css (excerpt)

.indent {
 padding-left: 30px;
}

You can see the indented paragraph in Figure 2.20.

Figure 2.20. Indenting text using CSS

Discussion
You shouldn’t use the HTML tag <blockquote> to indent text, unless the text is

actually a quote. Although visual editing environments such as Macromedia

Dreamweaver implement text indentation by applying a blockquote, resist the

temptation to use it for this purpose; instead, set up a CSS rule to indent the appro­

priate blocks as shown above.

The <blockquote> tag is designed to mark up a quote, and devices such as screen

readers used by the visually impaired will read this text in a way that helps those

users understand that what they’re hearing is a quote. If you use <blockquote> to

indent regular paragraphs, it will be very confusing for users who hear the content

read as a quote.

The CSS Anthology46

A One-liner

A related technique enables us to indent just the first line of each paragraph.

Simply apply the CSS property text-indent either to the paragraph, or to a class

that’s applied to the paragraphs you wish to display in this way:

indent2.css

p {
 text-indent: 20px;
}

How do I center text?

Solution
You can center text, or any other element, using the text-align property with a

value of center:

center.html (excerpt)

<p>After a time she threw it up so high that she missed catching
it as it fell, and the ball bounded away, and rolled along upon
the ground till at last it fell down into the spring.</p>

<p class="centered">The princess looked into the spring after her
ball, but it was very deep, so deep that she could not see the
bottom of it. Then she began to bewail her loss, and said, "Alas!
If I could only get my ball again, I would give all my fine
clothes and jewels, and everything that I have in the world."</p>

center.css (excerpt)

.centered {
 text-align: center;
}

The result of this rule can be seen in Figure 2.21.

47Text Styling and Other Basics

Figure 2.21. Centering text using text-align

How do I change text to all capitals
using CSS?
Solution
You can change text to all capitals, and perform other transformations, using the

text-transform property:

uppercase.html (excerpt)

<p>After a time she threw it up so high that she missed catching
it as it fell, and the ball bounded away, and rolled along upon
the ground till at last it fell down into the spring.</p>

<p class="transform">The princess looked into the spring after her
ball, but it was very deep, so deep that she could not see the
bottom of it. Then she began to bewail her loss, and said, "Alas!
If I could only get my ball again, I would give all my fine
clothes and jewels, and everything that I have in the world."</p>

The CSS Anthology48

uppercase.css (excerpt)

.transform {
 text-transform: uppercase;
}

Note the uppercase text in Figure 2.22.

Figure 2.22. Using text-transform to display the text in uppercase letters

Discussion
The text-transform property has other useful values. The value capitalize will

capitalize the first letter of each word, as illustrated in Figure 2.23:

capitalize.css (excerpt)

.transform {
 text-transform: capitalize;
}

The other values that the text-transform property can take are:

■ lowercase

■ none (the default)

49Text Styling and Other Basics

Figure 2.23. Applying text-transform to capitalize the first letter of every word

How do I change or remove the bullets
on list items?
Solution
You can change the style of bullets displayed on an unordered list by altering the

list-style-type property. First, here’s the markup for the list:

listtype.html (excerpt)

 list item one
 list item two
 list item three

To display square bullets, like the ones shown in Figure 2.24, set the

list-style-type property to square:

The CSS Anthology50

listtype.css

ul {
 list-style-type: square;
}

Figure 2.24. Using square bullets for list items

Discussion
Other values that the list-style-type property can take are:

■ disc

■ circle

■ decimal-leading-zero

■ decimal

■ lower-roman

■ upper-roman

■ lower-greek

■ lower-alpha

■ lower-latin

■ upper-alpha

■ upper-latin

■ Hebrew

■ Armenian

■ Georgian

■ none

51 Text Styling and Other Basics

Not all of these values are supported by all browsers; those browsers that don’t

support a particular bullet type will display the default type instead. You can see

the different types, and check the support your browser provides for them, at the

CSS Test Suite for list style type.1 Setting list-style-type to none will remove

bullets from the display, although the list will still be indented as if the bullets were

there, as Figure 2.25 shows:

listtype2.css

ul {
 list-style-type: none;
}

Figure 2.25. Displaying a list without bullets

How do I use an image for a
list-item bullet?
Solution
To use an image for a bullet, create your image, then use the list-style-image

property, instead of list-style-type, to set your bullets. This property accepts a

URL, which can incorporate the path to your image file as a value:

1 http://www.meyerweb.com/eric/css/tests/css2/sec12-06-02a.htm

http://www.meyerweb.com/eric/css/tests/css2/sec12-06-02a.htm
http://www.meyerweb.com/eric/css/tests/css2/sec12-06-02a.htm

The CSS Anthology52

listimage.css

ul {
 list-style-image: url(bullet.gif);
}

Figure 2.26 shows how this effect can be used to spruce up a list.

Figure 2.26. Using an image as a list bullet

Setting Bullets on Individual List Items

The list-style-image property actually applies to the list item (li) elements

in the list. However, if you apply list-style-image to the list as a whole (the

ul or ol element), each individual list item will inherit it. You do, however, have

the option of setting the property on individual list items (by assigning a class

or id to each), giving individual items their own unique bullet images.

How do I remove the indented left-hand
margin from a list?
If you’ve set list-style-type to none, you may also wish to remove or decrease

the default left-hand margin that the browser sets on a list.

53Text Styling and Other Basics

Solution
To remove the indentation entirely and have your list left-aligned so that it lines

up with, for example, a preceding paragraph as shown in Figure 2.27, use a style

rule similar to this:

listnomargin.css

ul {
 list-style-type: none;
 padding-left: 0;
 margin-left: 0;
}

Figure 2.27. A list without indentation or bullets

Discussion
You can apply new indentation values to the list items if you wish. To indent the

content by a few pixels, try this:

listsmallmargin.css

ul {
 list-style-type: none;
 padding-left: 5px;
 margin-left: 0;
}

The CSS Anthology54

How do I display a list horizontally?
By default, list items display as block elements; therefore, each new item will display

on a new line. However, there may be times when some content on your page is,

structurally speaking, a list, even though you mightn’t want to display it as such—a

collection of navigation links is a good example. How can you display these list

items horizontally?

Solution
You can set a list to display horizontally by altering the display property of the li

element to inline, like so:

listinline.html (excerpt)

<ul class="horiz">
 list item one
 list item two
 list item three

listinline.css

ul.horiz li {
 display: inline;
}

The result of this style rule is depicted in Figure 2.28.

Figure 2.28. Displaying a list horizontally

55Text Styling and Other Basics

How do I add comments to my CSS file?
You can, and should, add comments to your CSS file. CSS files that are very

simple—containing just a few rules for text styling purposes, for instance—may not

require commenting. However, once you start to use a large number of style rules

and multiple style sheets on a site, comments come in very handy! Without them,

you can spend a lot of time hunting around for the right classes, pondering which

class does what, and trying to find the style sheet in which it lives.

Solution
CSS supports multiline C-style comments, just like JavaScript. So, to comment out

an area, use the following sequence of characters:

/*

⋮

*/

At the very least, you should add a comment at the top of each style sheet to explain

what’s in that style sheet, like so:

/* This is the default style sheet for all text on the site */

How do I remove page margins without
adding attributes to the <body> tag?
Before CSS support was widespread, web designers would often remove the default

gutter between the document and the browser window by adding attributes to the

<body> tag, like this:

<body topmargin="0" leftmargin="0" marginheight="0"

 marginwidth="0">

The CSS Anthology56

Solution
The above attributes of the <body> tag are now deprecated. They should be replaced

by the following style rules, which have been defined for the body element:

body {

 margin: 0;

 padding: 0;

}

Cleaning All of the Gutters

Some browsers (such as older versions of Opera) apply margin and padding to

the html element instead of the body tag.2 So, to ensure that you’ve covered all

your bases, you should also include the html element in your style rule:

zeropagegutter.css (excerpt)

html, body {
 margin: 0;
 padding: 0;
}

How can I remove browsers’ default padding
and margins from all elements?
The display that you see in a browser when you view an unstyled document is the

result of the browser’s internal style sheet. Often, the differences that arise in the

way various browsers display an unstyled page occur because those browsers have

slightly different internal style sheets.

Solution
One way to solve this problem is to remove the default margins and padding from

all elements before you create your styles.

2 http://archivist.incutio.com/viewlist/css-discuss/46074/

http://archivist.incutio.com/viewlist/css-discuss/46074/
http://archivist.incutio.com/viewlist/css-discuss/46074/
http://archivist.incutio.com/viewlist/css-discuss/46074/

57Text Styling and Other Basics

The following rule will set the padding and margins on all elements to zero. It will

have the effect of causing every element on the page—paragraphs, headings, lists,

and more—to display without leaving any space between itself and its neighbors,

as Figure 2.29 demonstrates:

zeropagemargin.css (excerpt)

* {
 margin: 0;
padding: 0

}

Figure 2.29. Removing the default margins and padding from all elements on a page

Discussion
This style rule uses the universal selector—*—to remove the margins and padding

from everything, a technique known as performing a global whitespace reset.3 If

3 http://leftjustified.net/journal/2004/10/19/global-ws-reset/

http://leftjustified.net/journal/2004/10/19/global-ws-reset/
http://leftjustified.net/journal/2004/10/19/global-ws-reset/

The CSS Anthology58

you’re working on a particularly complex design, this may well be the best way to

start.

However, once you’ve done it, you’ll need to go back and add margins and padding

to every element that you use. This is particularly important for some form elements,

which may be rendered unusable by this style rule!

However, for simpler designs, removing the whitespace from every element is

usually overkill, and will simply generate more work, as you’ll need to go back and

add padding and margins to elements such as paragraphs, blockquotes, and lists.

A viable alternative for simple designs is to remove the margins and padding from

a select set of elements only. The following style rule shows how this works; it re­

moves whitespace from heading and list elements:

h1, h2, h3, h4, h5, h6, ul, ol {

 margin: 0;

 padding: 0;

}

Summary
This chapter has covered some of the more common questions asked by those who

are relatively new to CSS—questions that relate to styling and manipulating text

on the page. By combining these techniques, you can create attractive effects that

will degrade appropriately for those who aren’t using a browser that supports CSS.

Chapter3
CSS and Images
Given many of the designs favored by CSS purists, you’d be forgiven for thinking

that the image is soon to be a thing of the past, eschewed in favor of clean, standards-

compliant, CSS-formatted, text-based design. However, while sites that rely entirely

on sliced-up images are beginning to look a little dated in comparison with the

clean simplicity of the CSS layout “style,” well-placed images can bring an otherwise

commonplace design to life. And, as designers begin to push the boundaries of what

can be achieved with standards-compliant semantic markup, sites whose designs

manage to integrate semantics with beauty are becoming much more commonplace.

To work with images in CSS requires just a few simple skills—once you’ve learned

them, you can combine them to create countless interesting effects. The solutions

in this chapter demonstrate the basic concepts of working with images while an­

swering some common questions. We’ll be using images more in the other chapters,

but, as with most of the solutions in this book, don’t be afraid to experiment to see

what unique effects you can create.

The CSS Anthology60

How do I add borders to images?

Photographic images, which might be used to illustrate an article, or displayed in

a photo album, look neat when they’re bordered with a thin line. However, opening

each shot in a graphics program to add borders is a time-consuming process and,

if you ever need to change that border’s color or thickness, you’ll need to go through

the same arduous process all over again. Fortunately, CSS makes this chore a whole

lot easier.

Solution
Adding a border to an image is a simple procedure using CSS. There are two images

in the document displayed in Figure 3.1.

Figure 3.1. Displaying images in a web browser

The following rule adds a single black border to our images:

img {

 border-width: 1px;

 border-style: solid;

 border-color: #000000;

}

The rule could also be written like this:

61 CSS and Images

borderbasic.css (excerpt)

img {
 border: 1px solid #000000;
}

Figure 3.2 shows the effect this rule has on the images.

Figure 3.2. Applying a CSS border to make the images look neater

Now, this is all well and good, but your layout probably contains other images to

which you don’t want to apply a permanent black border. The solution to this

problem is to create a CSS class for the border, and apply it to selected images as

required:

borderclass.css (excerpt)

.imgborder {
 border: 1px solid #000000;
}

If you’re displaying a selection of images—such as a photograph album—on the

page, you could set borders on all the images within a particular container, such as

a div that has a unique ID:

The CSS Anthology62

borderalbum.css (excerpt)

#album img {
 border: 1px solid #000000;
}

This approach will save you from having to add the class to each individual image

within the container.

How do I use CSS to replace the deprecated
HTML border attribute on images?
If you’re anything like me, you used to use the border attribute of the tag to

achieve certain effects—to ensure, for example, that an ugly blue border didn’t appear

around your navigation buttons. However, the border attribute has been deprecated

in the current versions of HTML and XHTML.

Solution
Just as you can create a border, so you can remove one. Setting an image’s border

property to none will remove those ugly borders:

bordernone.css (excerpt)

img {
 border: none;
}

How do I set a background image for my
page using CSS?
Before CSS, we added backgrounds to pages using the background attribute of the

<body> tag. This attribute is now deprecated and has been replaced by CSS proper­

ties.

63CSS and Images

Solution
This style rule adds the image background-norepeat.jpg as a background to any page

to which this style sheet is attached:

backgrounds.css

body {
 font: 0.9em Verdana, Geneva, Arial, Helvetica, sans-serif;
 background-color: #d2d7e4;
 color: #000000;
 background-image: url(background-norepeat.jpg);
 background-repeat: no-repeat;
}

The effects of this style are shown in Figure 3.3.

Figure 3.3. Displaying an image as a background image

The CSS Anthology64

Discussion
The CSS property background-image enables you to specify within the style sheet

the location of a background image. To apply a background to the entire document,

we’d set this property for the body element, but, as we’ll see in a solution later in

this chapter, a background image can be applied to any element on the page.

By default, the background will tile, repeating both vertically and horizontally to

fill the space required for the content. The effect shown in Figure 3.3 was achieved

using the image in Figure 3.4, with the background property set to no-repeat.

Figure 3.4. Creating a background effect using a (rather wide) image that does not repeat

The image is only 400 pixels tall—not as tall as a typical web page—so I’ve given

the page a background color that’s the same as the color of the bottom row of pixels

in the gradient image. In this way, the gradient merges seamlessly into the back­

ground color.

There is a better way to achieve this effect, though—using a smaller and faster-

loading background image. All we need to do is take a thin slice of our gradient

image, like the one shown in Figure 3.5.

65CSS and Images

Figure 3.5. A slice of the larger background image

By setting the background-image property for this new image to repeat-x, we can

achieve exactly the same visual effect that we saw in the first example, while using

a much smaller image file. Again, we specify a background color that matches the

bottom of the gradient image, to ensure that the gradient effect covers the whole of

the area exposed in the user’s browser.

If the gradient ran from left to right, rather than from top to bottom, we could use

the same approach to create the background—we’d simply need to rotate the effect

by 90 degrees. Taking a horizontal slice of the image and setting the

background-repeat to repeat-y causes our gradient to repeat down the page, as

Figure 3.6 shows.

The CSS Anthology66

Figure 3.6. A gradient image set to repeat-y

How do I position my background image?
By default, if you add a single, non-repeating background image to the page, it will

appear in the top-left corner of the viewport. If you’ve set the background to tile in

any direction, the first image will appear at that location, and will tile from that

point. However, it’s also possible to display the image at other locations on the page.

Solution
We use the CSS property background-position to position the image on the page:

67CSS and Images

backgroundposition.css (excerpt)

#content {
 background-color: #FFFFFF;
 padding: 1em 1em 40px 1em;
 background-image: url(tick.gif);
 background-repeat: no-repeat;
background-position: bottom right;

}

The above style rule will display a tick graphic at the bottom right of the white

content area, as shown in Figure 3.7. To prevent the text in this container from

overlapping the image, I’ve applied some padding to the container.

Figure 3.7. Using the background-position property to position the image

The CSS Anthology68

Discussion
The background-position property can take as its value keywords, percentage

values, or values in units, such as pixels.

Keywords
In the example above, we used keywords to specify that the background image

should be displayed at the bottom right of the content div:

backgroundposition.css (excerpt)

 background-position: bottom right;

You can use any of these keyword combinations:

■ top left

■ top center

■ top right

■ center left

■ center center

■ center right

■ bottom left

■ bottom center

■ bottom right

If you only specify one of the values, the other will default to center:

background-position: top;

The style declaration above is the same as the following:

background-position: top center;

Percentage Values
To achieve more accurate image placement, you can specify the values as percent­

ages. This approach is particularly useful in a liquid layout where other page ele­

69CSS and Images

ments are specified in percentages so that they resize in accordance with the user’s

screen resolution and dimensions:

background-position: 30% 80%;

The first of the percentages included here refers to the background’s horizontal

position; the second dictates its vertical position. Percentages are taken from the

top-left corner of the display, with 0% 0% placing the top-left corner of the image

against the top-left corner of the browser window, and 100% 100% placing the bottom-

right corner of the image against the bottom-right corner of the window.

As with keywords, a default percentage value comes into play if you only specify

one value. That default is 50%. Take a look at the following declaration:

background-position: 30%;

The above style declaration creates the same effect as that shown below:

background-position: 30% 50%;

Unit Values
You can set positioning values using any CSS units, such as pixels or ems:

background-position: 20px 20px;

As with percentages, the first of the specified values dictates the horizontal position,

while the second dictates the vertical. But unlike percentages, the measurements

directly control the position of the top-left corner of the background image.

You can mix units with percentages and, if you only specify one value, the second

will default to 50%.

The CSS Anthology70

How do I fix my background image in place
when the page is scrolled?
You’ve probably seen sites on which the background image remains static while

the content scrolls over it. This effect is achieved using the background-attachment

property.

Solution
We can use the background-attachment property with a value of fixed to fix the

background so that it doesn’t move with the content, as illustrated in Figure 3.8.

Figure 3.8. A fixed background image that doesn’t scroll off the page with the content

backgroundfixed.html (excerpt)

body {
 font: 0.9em Verdana, Geneva, Arial, Helvetica, sans-serif;
 background-color: #d2d7e4;
 color: #000000;
 background-image: url(background-repeatx.jpg);
 background-repeat: repeat-x;

71 CSS and Images

background-attachment: fixed;

}

Discussion
In this solution, we’re using several CSS properties to add our image to the back­

ground, position it, and dictate how it behaves when the document is scrolled.

Alternatively, we could use a shorthand method to supply this information—the

CSS background property. This property allows you to declare background-color,

background-image, background-repeat, background-attachment, and

background-position in a single property declaration. Take, for example, the CSS

rule shown below:

backgroundfixed.css (excerpt)

body {
 background-color: #d2d7e4;
 background-image: url(background-repeatx.jpg);
 background-repeat: repeat-x;
 background-attachment: fixed;
 background-position: 0 0;
}

These declarations could be written more succinctly as follows:

body {

 background: #d2d7e4 url(background-repeatx.jpg) repeat-x fixed 0 0;

}

A final note on background-attachment: fixed: as is often the case with CSS

styles, support for this declaration is limited among the Internet Explorer family.

Internet Explorer 7 implements it correctly, but earlier versions of the browser do

not. Though workarounds involving JavaScript are available, they may be more

trouble than they’re worth.1 By default, users of older versions of Internet Explorer

that don’t support background-attachment: fixed will see a scrolling background

1 http://www.howtocreate.co.uk/fixedBackground.html

http://www.howtocreate.co.uk/fixedBackground.html
http://www.howtocreate.co.uk/fixedBackground.html
http://www.howtocreate.co.uk/fixedBackground.html

The CSS Anthology72

image—an outcome that’s generally considered an acceptable compromise (and

may even entice these users to upgrade their browsers).

Can I set a background image on
any element?
In this chapter, we’ve already looked at setting background images for the document

and for the main content area of the page. However, background images can be used

on other elements, too.

Solution
This style rule creates the effect that displays on the Ingredients box in Figure 3.9.

backgrounds2.css (excerpt)

#smallbox {
 background-image: url(boxbg.gif);
 background-repeat: repeat-x;
 float: left;
 margin-right: 20px;
 width: 220px;
 border:1px solid #d2d7e4;
}

The gradient background on the Ingredients box shown in Figure 3.9 comprises a

background image that’s very similar to the one I’ve used for the background on the

body, except that the Ingredients box coloring graduates from light blue to white.

I’ve also added a border that’s the same as the color at the darkest part of the

gradient.

73CSS and Images

Figure 3.9. Using a background image to create a gradient behind the Ingredients box

Discussion
Background images can be applied to any page element, including headings, as

Figure 3.10 shows. There, I’ve used a repeated image to display a dotted border

beneath the heading. The image is positioned at the bottom left of the heading, and

I’ve given the heading six pixels of bottom padding so that the text doesn’t appear

to sit on top of the background image:

backgrounds2.html (excerpt)

<h1>Chinese-style stuffed peppers</h1>

backgrounds2.css (excerpt)

h1 {
 background-image: url(dotty.gif);
 background-repeat: repeat-x;
 background-position: bottom left;
 padding: 0 0 6px 0;
 color: #41667f;
 font-size: 160%;
 font-weight: normal;

The CSS Anthology74

background-color: transparent;

}

Figure 3.10. Applying a background image to the heading to create an underline

You can even apply backgrounds to links, which can give you the ability to make

some interesting effects, as Figure 3.11 shows:

backgrounds2.css (excerpt)

a:link, a:visited {
 color: #41667f;
 background-color: transparent;
 padding-right: 10px;
}
a:hover {
 background-image: url(arrow.gif);
 text-decoration: none;
 background-position: center right;
 background-repeat: no-repeat;
}

75CSS and Images

Figure 3.11. Applying a background image to the link on hover

How do I place text on top of an image?
In the bad old pre-CSS days, the only way to overlay text on an image was to add

the text via your graphics program! CSS provides far better means to achieve this

effect.

Solution
The easiest way to layer text over of an image is to set the image to be a background

image. The image that appears beneath the heading on the Ingredients box in Fig­

ure 3.12 was added using the following style rule:

backgrounds3.css (excerpt)

#smallbox h2 {
 margin: 0;
 padding: 0.2em;
 background-image: url(boxheaderbg.jpg);
 background-repeat: no-repeat;
 color: #FFFFFF;
 background-color: red;
 font-size: 140%;

The CSS Anthology76

font-weight: normal;

}

Figure 3.12. Applying a background image to the Ingredients box heading

Discussion
Using CSS to place text on top of an image offers many advantages over the approach

of simply adding text to the image through a graphics program.

First, it’s harder to change text that’s part of a graphic—to do so, you need to find

the original graphic, re-edit it in a graphics program, and upload it again every time

you want to change the text.

Second, text is far more accessible if it’s included on the page as text content rather

than as part of an image. Browsers that don’t support images will be able to read

text that has been added using CSS, and such text can also be resized by the user.

Including image text via CSS can also benefit your search engine rankings—though

search engines can’t index text that’s part of an image, they can see regular text that

has been placed on top of an image, and index it accordingly.

77CSS and Images

Check your Contrast!

If you’re going to overlay a background image with light-colored text (as I’ve done

in Figure 3.12), be sure also to give the area a dark background color. This way,

the text will remain readable against the background if the user has disabled images

in the browser, or are browsing on a slow connection over which the images don’t

load immediately.

How do I add more than one background
image to my document?
Although it’s detailed in the CSS2 specification, it’s not currently possible to apply

more than one background image to your document (only the Safari browser supports

multiple backgrounds at present). So, what should you do if you want to add two

images to the document—for example, one that repeats, and one that stands alone?

Solution
It is possible to give the effect of multiple background images by applying different

backgrounds to various nested elements, such as the html and body elements:

backgrounds4.css (excerpt)

html {
 background-image: url(background-repeatx.jpg);
 background-repeat: repeat-x;
 background-color: #d2d7e4;
}

body {
 font: 0.9em Verdana, Geneva, Arial, Helvetica, sans-serif;
 color: #000000;
 background-image: url(recipes.gif);
 background-repeat: no-repeat;
 background-position: 98% 2%;
 margin: 0;
 padding: 46px 0 0 0;
}

The CSS Anthology78

The effects of these styles can be seen in Figure 3.13.

Figure 3.13. Applying background images to the html and body elements

Discussion
This simple example can form the basis of more complex effects using multiple

background images. As you’ve seen through the examples in this chapter, a back­

ground image can be applied to any element on the page. The careful and creative

use of images in this way can achieve many interesting visual effects while main­

taining the accessibility of the document (as the background images will not interfere

with the document’s structure).

Many of the entries in the CSS Zen Garden rely on such careful use of background

images to achieve their layouts.2

How can I use transparency in my pages?
Achieving real transparency using images is possible with the PNG image format—by

saving your images as a 24-bit PNG, you can achieve opacity and true transparency.

2 http://www.csszengarden.com/

http://www.csszengarden.com/
http://www.csszengarden.com/

79CSS and Images

While GIF images also support transparency, the format requires us to use a matte—a

color that’s similar to the background upon which the image will be placed—when

we save a transparent GIF image.

This technicality means that creating a transparent GIF image that spans differently

colored backgrounds is very difficult. It often involves chopping the image in two,

saving each part separately, then reassembling the image pieces on the page—a

process that reeks of old-school methods, and is one that we usually try to avoid in

CSS-based layouts. Using the GIF format for an image that will scroll over a fixed

background results in an ugly “halo effect,” which can be seen in Figure 3.14 and

Figure 3.15.

Figure 3.14. Using blue as a matte color behind the Recipes GIF image

Figure 3.15. Scrolling down the page causing the GIF’s matte pixels to display as a halo

Solution
The example in Figure 3.16 uses two PNG images. The first replaces the white

background of #content with a ten-pixel PNG image. I developed this image in

Photoshop by creating a new transparent image, then placing a solid white layer

over the top of the transparent background. I then reduced the opacity of this layer

to 40% and saved the file as a 24-bit PNG, giving it the name opaque.png.

The CSS Anthology80

The second image is a replacement for the background image recipes.gif; it’s a 24­

bit PNG with a transparent background. I’d like to fix the image in the top right of

the viewport (using background-attachment: fixed), so that it remains in that

location when the user scrolls the page. If I were to use a GIF image (with a dark

blue as the matte), we’d see the halo effect mentioned above when the background

moves and the image appears above the lighter page background.

Here’s the CSS that creates the effect shown in Figure 3.16:

background5.css (excerpt)

body {
 font: 0.9em Verdana, Geneva, Arial, Helvetica, sans-serif;
 color: #000000;
 background-image: url(recipes.png);
 background-repeat: no-repeat;
 background-position:98% 2%;
 background-attachment:fixed;
 margin: 0;
 padding: 46px 0 0 0;
}

#content {
 margin: 0 4em 2em 4em;
 background-image: url(opaque.png);
 padding: 1em 50px 40px 1em;
}

Discussion
PNG images can be used to create unique and attractive effects. Unfortunately, the

browser that has the largest market share at the time of writing—Internet Explorer

6—doesn’t provide Alpha channel support, so it can’t render transparent PNGs.

However, as long as you think carefully through your layout, it’s often possible to

include this kind of effect in your pages for visitors using other modern browsers,

including Firefox, Safari, Opera, and Internet Explorer 7. Another alternative is to

use JavaScript to work around this limitation of Internet Explorer 6 and earlier. I’ll

outline a method for doing this in Chapter 7.

81 CSS and Images

Figure 3.16. Displaying an opaque background without the halo effect on the Recipes image

Summary
This chapter has explained the answers to some common image-related questions.

We’ve concentrated mainly on background images, as these really are the building

blocks with which we create image-rich design in CSS. Keeping images in the

background enables you to more easily offer alternative style sheets and change the

look of your pages, as well as to create interesting effects.

There will, of course, be image-related questions all through this book. In particular,

Chapter 9 will explore the positioning of images along with other elements on the

page, and the use of images in more complex layouts than the one we’ve seen here.

Chapter4
Navigation
Unless you limit yourself to one-page web sites, you’ll need to design navigation.

In fact, navigation is among the most important parts of any web design, and requires

a great deal of thought if visitors are to get around your site easily.

Making site navigation easy is one area in which CSS really comes into its own.

Older methods of creating navigation tended to rely on lots of images, nested tables

and JavaScript—all of which can seriously affect the usability and accessibility of

a site. If your site cannot be navigated using a device that doesn’t support JavaScript,

for example, not only are you blocking users who have turned JavaScript off, but

you’re also locking out text-only devices such as screen readers and search engine

robots—they’ll never get past your home page to index the content of your site. If

your design clients don’t care about accessibility, tell them their clunky menu is

stopping them from achieving a decent search engine ranking!

CSS allows you to create attractive navigation that, in reality, is no more than

text—text that can be marked up in such a way as to ensure that it’s both accessible

and understandable by all those who can’t physically see your design, but still want

to get to your content. In this chapter, we’ll look at a variety of solutions for creating

The CSS Anthology84

CSS-based navigation. Some are suited to implementation on an existing site, to

make it load more quickly, and boost its accessibility by replacing an old-fashioned,

image-based navigation. Others are more suited to incorporation within a pure CSS

layout.

How do I replace image-based navigation
with CSS?
Creating an image as a navigation “button” is still a common way to develop the

navigation for a site. The images usually contain text that shows where each navig­

ation item leads. A variety of problems are associated with using images for naviga­

tion buttons:

■	 In order to add a new item to the navigation, we must first create a new image.

If, at this point, you discover that you’ve lost the original Photoshop file you

used for the navigation buttons, you’ll need to recreate the whole navigation

from scratch!

■	 Imagine your navigation is created dynamically, perhaps using database content.

While it’s possible to create new images on the fly, someone will have to write

a whole lot more code to integrate them onto every page!

■	 Users who have turned images off, or who use devices such as screen readers,

will be unable to read the text within the button.

■	 Additional images extend page load times.

Solution
Old-school navigation systems are often implemented using layout tables and images.

You can replace such image-based navigation with text that’s styled using CSS.

The following CSS and HTML creates a simple navigation menu by styling the cells

of a table and the links within them.

85Navigation

Lists are Usually Best!

I’ve used a table in this example only in the hope that it may be helpful if you’re

trying to retrofit an older site without completely rebuilding the page. If you’re

building your navigation from scratch, you should mark up your navigation items

as an unordered list—the topic of the following solution, “How do I style a struc­

tural list as a navigation menu?”

replaceimages.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Replace images</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="replaceimages.css" />
</head>
<body>
<table id="navigation">
 <tr>
 <td>
 Recipes

 </td>
 </tr>
 <tr>
 <td>
 Contact Us

 </td>
 </tr>
 <tr>
 <td>
 Articles

 </td>
 </tr>
 <tr>
 <td>
 Buy Online

 </td>
 </tr>
</table>

The CSS Anthology86

</body>

</html>

replaceimages.css

#navigation {
 width: 180px;
 padding: 0;
 margin: 0;
 border-collapse: collapse;
}
#navigation td {
 border-bottom: 2px solid #460016;
 background-color: #FFDFEA;
 color: #460016;
}
#navigation a:link, #navigation a:visited {
 display: block;
 margin: 0.4em 0 0.4em 1em;
 color: #460016;
 background-color: transparent;
 font-size: 90%;
 text-decoration: none;
 font-weight: bold;
}
* html #navigation a {
 width: 100%;
}

This technique could be used to ease the maintenance of an existing site in two

ways: first, by allowing us to add new menu items without needing to create new

images, and second, by reducing load times.

Discussion
CSS can be used to create attractive navigation systems through the simple styling

of plain text. Figure 4.1 shows a menu that was created by inserting images into

table cells—a common way to create a site menu.

87Navigation

Figure 4.1. Using images to create navigation

Here’s the markup for this table:

<table width="180" cellpadding="0" cellspacing="0">

 <tr>

 <td>

 <img src="images/nav1.gif" width="180"

 height="28" alt="Recipes" border="0" />

 </td>

 </tr>

 <tr>

 <td>

 <img src="images/nav2.gif" width="180"

 height="28" alt="Contact Us" border="0" />

 </td>

 </tr>

 <tr>

 <td>

 <img src="images/nav3.gif" width="180"

 height="28" alt="Articles" border="0" />

 </td>

 </tr>

 <tr>

 <td>

 <img src="images/nav4.gif" width="180"

 height="28" alt="Buy Online" border="0" />

 </td>

 </tr>

</table>

The CSS Anthology88

By removing the images and replacing them with the text for each navigation item,

we immediately make our code smaller and the page more accessible. However,

plain text doesn’t do much for the appearance of the page, as you can see in Fig­

ure 4.2.

Figure 4.2. A bland navigation system without images

We can use CSS to recreate the look of this menu without the images. First, let’s

give the navigation table an ID—this will enable us to identify it within the docu­

ment, and create CSS selectors for the elements within that table. We’ll also be able

to create some style rules for the ID navigation, which will allow us to remove the

other attributes from the <table> tag:

replaceimages.html (excerpt)

<table id="navigation">

Here’s the CSS that controls how the table looks:

replaceimages.css (excerpt)

#navigation {
 width: 180px;
 padding: 0;
 margin: 0;
 border-collapse: collapse;
}

89Navigation

Setting the border-collapse property to collapse causes the cells of the table to

stick together, leaving only a single border between cells. By default, each table cell

would have its own border, and additional margins would exist between cells.

Now we need to style the table’s td elements. We want to give the cells the desired

background color, and add a bottom border to each:

replaceimages.css (excerpt)

#navigation td {
 border-bottom: 2px solid #460016;
 background-color: #FFDFEA;
 color: #460016;
}

It’s already looking good, as you can see in Figure 4.3.

Figure 4.3. Applying the new styles to the navigation

Now we must create CSS for the links within the table cells. We need to set some

padding to move the text away from the edge of the cell; we must define a color,

size, font family, and weight; and we want to remove the underline from the link:

replaceimages.css (excerpt)

#navigation a:link, #navigation a:visited {
 display:block;
 padding: 0.4em 0 0.4em 1em;
 color: #460016;

The CSS Anthology90

background-color: transparent;

 font-size: 90%;

 text-decoration: none;

 font-weight: bold;

}

Figure 4.4 shows the finished effect.

Figure 4.4. Creating the navigation using CSS instead of images

How do I style a structural list
as a navigation menu?
The example titled “How do I replace image-based navigation with CSS?” illustrated

the use of CSS to create navigation elements within a table. That method proves

very useful where you’re retrofitting an existing site to improve its accessibility and

load times, but for new sites, you’re likely to be trying to avoid using tables for

layout, or using them only where absolutely necessary. Therefore, a navigation

solution that doesn’t involve tables is useful; also, by eradicating table elements,

you’ll find that your page contains far less markup.

Solution
A navigation system is simply a list of places that users can visit on the site.

Therefore, an unordered list is the ideal way to mark up your navigation. The

91 Navigation

navigation in Figure 4.5 is marked up as a list, and styled using CSS, as you can see

here.

Figure 4.5. Creating navigation by styling a list

listnav1.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Lists as navigation</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="listnav1.css" />
</head>
<body>
<div id="navigation">

 Recipes
 Contact Us
 Articles
 Buy Online

</div>
</body>
</html>

The CSS Anthology92

listnav1.css

#navigation {
 width: 200px;
}
#navigation ul {
 list-style: none;
 margin: 0;
 padding: 0;
}
#navigation li {
 border-bottom: 1px solid #ED9F9F;
}
#navigation li a:link, #navigation li a:visited {
 font-size: 90%;
 display: block;
 padding: 0.4em 0 0.4em 0.5em;
 border-left: 12px solid #711515;
 border-right: 1px solid #711515;
 background-color: #B51032;
 color: #FFFFFF;
 text-decoration: none;
}

Discussion
To create navigation based on an unordered list, first create your list, placing each

navigation link inside a li element:

listnav1.html (excerpt)

 Recipes
 Contact Us
 Articles
 Buy Online

93Navigation

Next, wrap the list in a div with an appropriate ID:

listnav1.html (excerpt)

<div id="navigation">

 Recipes
 Contact Us
 Articles
 Buy Online

</div>

As Figure 4.6 shows, this markup looks fairly ordinary with the browser’s default

styles applied.

Figure 4.6. A very basic, unstyled list

The first thing we need to do is style the container in which the navigation sits—in

this case, #navigation:

listnav1.css (excerpt)

#navigation {
 width: 200px;
}

I’ve given #navigation a width. If this navigation system were part of a CSS page

layout, I’d probably add some positioning information to this ID as well.

The CSS Anthology94

Next, we style the list:

listnav1.css (excerpt)

#navigation ul {
 list-style: none;
 margin: 0;
 padding: 0;
}

As Figure 4.7 illustrates, the above rule removes list bullets and the indented margin

that browsers apply, by default, when displaying a list.

Figure 4.7. Viewing the list after indentation and bullets are removed

The next step is to style the li elements within #navigation, to give them a bottom

border:

listnav1.css (excerpt)

#navigation li {
 border-bottom: 1px solid #ED9F9F;
}

Finally, we style the link itself:

95Navigation

listnav1.css (excerpt)

#navigation li a:link, #navigation li a:visited {
 font-size: 90%;
 display: block;
 padding: 0.4em 0 0.4em 0.5em;
 border-left: 12px solid #711515;
 border-right: 1px solid #711515;
 background-color: #B51032;
 color: #FFFFFF;
 text-decoration: none;
}

Most of the work is done here, creating CSS rules to add left and right borders, re­

moving the underline, and so on. The first property declaration in this rule sets the

display property to block. This causes the link to display as a block element,

meaning that the whole area of each navigation “button” is active when you move

the cursor over it—the same effect you’d see if you used an image for the navigation.

How do I use CSS to create rollover
navigation without images or JavaScript?
Site navigation often features a rollover effect: when a user holds the cursor over a

menu button, a new button image displays, creating a highlighting effect. To achieve

this effect using image-based navigation, you need to use two images and JavaScript.

Solution
Using CSS to build your navigation makes the creation of attractive rollover effects

far simpler than it would be if you used images. The CSS rollover is created using

the :hover pseudo-class selector—the same selector you’d use to style a hover state

for your links.

Let’s take the above list navigation example and add the following rule to create a

rollover effect:

listnav2.css (excerpt)

#navigation li a:hover {
 background-color: #711515;

The CSS Anthology96

color: #FFFFFF;

}

Figure 4.8 shows what the menu looks like when the cursor is positioned over the

first menu item.

Figure 4.8. The CSS navigation showing a rollover effect

Hover Here? Hover There!

In Mozilla, and Internet Explorer 7, you can apply the :hover pseudo-selector

to any element you like, but in Internet Explorer 6 and below, you can apply it

only to links.

Older versions of Internet Explorer allow only the anchor text to be made clickable,

because the link doesn’t expand to fill its container (in this case, the list item).

This means that the user is forced actually to click on the text, rather than the red

background, to select the menu item.

One way to rectify this issue is to use a CSS hack that expands the width of the

link—but only in Internet Explorer version 6 and earlier. Here’s the rule that does

just that:

* html #navigation li a {
 width: 100%;
}

We’ll cover cross-browser techniques in more detail in Chapter 7.

97Navigation

Discussion
The CSS we’ve used to create this effect is very simple. You can create hover states

for heavily styled links just as you can for standard links. In this example, I simply

changed the background color to make it the same as the left-hand border; however,

you could alter the background, text, and border color to create interesting effects

for the navigation.

Can I use CSS and lists to create a
navigation system with subnavigation?
The examples we’ve seen so far in this chapter have assumed that you only have

one navigation level to display. Sometimes, more than one level is necessary—but

is it possible to create multi-leveled navigation using styled lists in CSS?

Solution
The perfect way to display subnavigation within a navigation system is to create a

sublist within a list. The two levels of navigation will be easy to understand when

they’re marked up in this way—even in browsers that don’t support CSS.

To produce multi-level navigation, we can edit the example we saw in Figure 4.8,

adding a nested list and styling the colors, borders, and link properties of the new

list’s items:

listnav_sub.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Lists as navigation</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="listnav_sub.css" />
</head>
<body>
<div id="navigation">

 Recipes

The CSS Anthology98

 Starters

 Main Courses

 Desserts

 Contact Us

 Articles

 Buy Online

</div>

</body>

</html>

listnav_sub.css

#navigation {
 width: 200px;
}
#navigation ul {
 list-style: none;
 margin: 0;
 padding: 0;
}
#navigation li {
 border-bottom: 1px solid #ED9F9F;
}
#navigation li a:link, #navigation li a:visited {
 font-size: 90%;
 display: block;
 padding: 0.4em 0 0.4em 0.5em;
 border-left: 12px solid #711515;
 border-right: 1px solid #711515;
 background-color: #B51032;
 color: #FFFFFF;
 text-decoration: none;
}
#navigation li a:hover {
 background-color: #711515;
 color: #FFFFFF;
}
#navigation ul ul {
 margin-left: 12px;
}

99Navigation

#navigation ul ul li {

 border-bottom: 1px solid #711515;

 margin:0;

}

#navigation ul ul a:link, #navigation ul ul a:visited {

 background-color: #ED9F9F;

 color: #711515;

}

#navigation ul ul a:hover {

 background-color: #711515;

 color: #FFFFFF;

}

The result of these additions is shown in Figure 4.9.

Figure 4.9. The CSS list navigation containing subnavigation

Discussion
Nested lists are a perfect way to describe the navigation system that we’re working

with here. The first list contains the main sections of the site; the sublist under

Recipes shows the subsections within the Recipes category. Even without any CSS

The CSS Anthology100

styling, the structure of the list is still clear and comprehensible, as you can see in

Figure 4.10.

Figure 4.10. The navigation remaining logical without the CSS

The HTML that we use to mark up this list simply nests the sublist inside the li

element of the appropriate main item:

 Recipes

 Starters

 Main Courses

 Desserts

 Contact Us

 Articles

 Buy Online

With this HTML, and without any changes to the CSS, the menu will display as

shown in Figure 4.11, where the li elements inherit the styles of the main menu.

101 Navigation

Figure 4.11. The sublist taking on the styles of the main navigation

Let’s add a style rule for the nested list to communicate visually that it’s a submenu,

and not part of the main navigation:

listnav_sub.css (excerpt)

#navigation ul ul {
 margin-left: 12px;
}

This rule will indent the nested list so that it’s in line with the right edge of the

border for the main menu, as demonstrated in Figure 4.12.

The CSS Anthology102

Figure 4.12. The indented subnavigation

Let’s add some simple styles to the li and a elements within the nested list to

complete the effect:

listnav_sub.css (excerpt)

#navigation ul ul li {
 border-bottom: 1px solid #711515;
 margin: 0;
}
#navigation ul ul a:link, #navigation ul ul a:visited {
 background-color: #ED9F9F;
 color: #711515;
}
#navigation ul ul a:hover {
 background-color: #711515;
 color: #FFFFFF;
}

103 Navigation

How do I make a horizontal menu using
CSS and lists?
All the examples we’ve seen in this chapter have dealt with vertical navigation—the

kind of navigation that will most likely be found in a column to the left or right of

a site’s main content area. However, site navigation is also commonly found as a

horizontal menu close to the top of the document.

Solution
As Figure 4.13 shows, this type of menu can be created using styled lists in CSS.

The li elements must be set to display inline so that each list item does not display

on its own line.

Figure 4.13. Using CSS to create horizontal list navigation

Here’s the HTML and CSS that creates this display:

listnav_horiz.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Lists as navigation</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="listnav_horiz.css" />
</head>
<body>
<div id="navigation">

The CSS Anthology104

 Recipes

 Contact Us

 Articles

 Buy Online

</div>

</body>

</html>

listnav_horiz.css

#navigation {
 font-size: 90%;
}
#navigation ul {
 list-style: none;
 margin: 0;
 padding: 0;
 padding-top: 1em;
}
#navigation li {
 display: inline;
}
#navigation a:link, #navigation a:visited {
 padding: 0.4em 1em 0.4em 1em;
color: #FFFFFF;
 background-color: #B51032;
 text-decoration: none;
 border: 1px solid #711515;
}
#navigation a:hover {
 color: #FFFFFF;
 background-color: #711515;
}

Discussion
To create the horizontal navigation, we start with a list that’s identical to the one

we created for our vertical list menu:

105 Navigation

listnav_horiz.html (excerpt)

<div id="navigation">

 Recipes
 Contact Us
 Articles
 Buy Online

</div>

We style the #navigation container to apply some basic font information, as we

did with the vertical navigation. In a CSS layout, this ID would probably also contain

some additional styles that determine the navigation’s position on the page:

listnav_horiz.css (excerpt)

#navigation {
 font-size: 90%;
}

In styling the ul element, we remove the list bullets and default indentation applied

to the list by the browser:

listnav_horiz.css (excerpt)

#navigation ul {
 list-style: none;
 margin: 0;
 padding: 0;
 padding-top: 1em;
}

The property that transforms our list from a vertical to a horizontal display is applied

to the li element. After we set the display property to inline, the list looks like

Figure 4.14:

listnav_horiz.css (excerpt)

#navigation li {
 display: inline;
}

The CSS Anthology106

Figure 4.14. Displaying the list menu horizontally

All that’s left for us to do is to style the links for our navigation:

listnav_horiz.css (excerpt)

#navigation a:link, #navigation a:visited {
 padding: 0.4em 1em 0.4em 1em;
color: #FFFFFF;
 background-color: #B51032;
 text-decoration: none;
 border: 1px solid #711515;
}
#navigation a:hover {
 color: #FFFFFF;
 background-color: #711515;
}

If you’re creating boxes around each link, as I have here, remember that, in order

to make more space between the text and the edge of its container, you’ll need to

add more left and right padding to the links. To create more space between the

navigation items, add left and right margins to the links.

How do I create button-like navigation
using CSS?
Navigation that appears to be composed of clickable buttons is a feature of many

web sites. This kind of navigation is often created using images to which effects are

applied to make the edges look beveled and button-like. Often, some JavaScript

107 Navigation

code is used to swap in another image, so the button appears to depress when the

user holds the cursor over it or clicks on the image.

Is it possible to create such button-like navigation systems using only CSS? Abso­

lutely!

Solution
Creating a button effect like that shown in Figure 4.15 is possible, and fairly

straightforward, using CSS. The effect’s success hinges on your use of the CSS

border properties.

Figure 4.15. Building button-like navigation with CSS

Here’s the code you’ll need:

listnav_button.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Lists as navigation</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="listnav_button.css"

 />
</head>
<body>
<div id="navigation">

 Recipes

The CSS Anthology108

Contact Us

 Articles

 Buy Online

</div>

</body>

</html>

listnav_button.css

#navigation {
 font-size:90%
}
#navigation ul {
 list-style: none;
 margin: 0;
 padding: 0;
 padding-top: 1em;
}
#navigation li {
 display: inline;
}
#navigation a:link, #navigation a:visited {
 margin-right: 0.2em;
 padding: 0.2em 0.6em 0.2em 0.6em;
 color: #A62020;
 background-color: #FCE6EA;
 text-decoration: none;
 border-top: 1px solid #FFFFFF;
 border-left: 1px solid #FFFFFF;
 border-bottom: 1px solid #717171;
 border-right: 1px solid #717171;
}
#navigation a:hover {
 border-top: 1px solid #717171;
 border-left: 1px solid #717171;
 border-bottom: 1px solid #FFFFFF;
 border-right: 1px solid #FFFFFF;
}

109 Navigation

Discussion
To create this effect, we’ll use the horizontal list navigation described in “How do

I make a horizontal menu using CSS and lists?”. However, to create the button look,

we’ll use different colored borders at the top and left than we use for the bottom

and right sides of each button. By giving the top and left edges of the button a

lighter colored border than we assign to the button’s bottom and right edges, we

create a slightly beveled effect:

listnav_button.css (excerpt)

#navigation a:link, #navigation a:visited {
 margin-right: 0.2em;
 padding: 0.2em 0.6em 0.2em 0.6em;
 color: #A62020;
 background-color: #FCE6EA;
 text-decoration: none;
 border-top: 1px solid #FFFFFF;
 border-left: 1px solid #FFFFFF;
 border-bottom: 1px solid #717171;
 border-right: 1px solid #717171;
}

We reverse the border colors for the hover state, which creates the effect of the

button being pressed:

listnav_button.css (excerpt)

#navigation a:hover {
 border-top: 1px solid #717171;
 border-left: 1px solid #717171;
 border-bottom: 1px solid #FFFFFF;
 border-right: 1px solid #FFFFFF;
}

Try using heavier borders, and changing the background images on the links, to

create effects that suit your design.

The CSS Anthology110

How do I create tabbed navigation
with CSS?
Navigation that appears as tabs across the top of the page is a popular navigation

choice. Many sites create tabs using images. However, this approach suffers from

the problems associated with text contained in images, which we discussed in “How

do I replace image-based navigation with CSS?”. However, it is possible to create a

tab effect by combining background images and text styled with CSS.

Solution
The tabbed navigation shown in Figure 4.16 can be created by styling a horizontal

list.

Figure 4.16. Using CSS to create tabbed navigation

111 Navigation

Here’s the HTML and CSS that creates this effect:

tabs.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Lists as navigation</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="tabs.css" />
</head>
<body id="recipes">
<div id="header">
<ul id="tabnav">
 <li class="recipes">Recipes
 <li class="contact">Contact Us
 <li class="articles">Articles
 <li class="buy">Buy Online

</div>
<div id="content">
<h1>Recipes</h1>
<p>Lorem ipsum dolor sit amet, … </p>
</div>
</body>
</html>

tabs.css

body {
 font: .8em/1.8em verdana, arial, sans-serif;
 background-color: #FFFFFF;
 color: #000000;
 margin: 0 10% 0 10%;
}

#header {
 float: left;
 width: 100%;
 border-bottom: 1px solid #8DA5FF;
 margin-bottom: 2em;
}

The CSS Anthology112

#header ul {

 margin: 0;

 padding: 2em 0 0 0;

 list-style: none;

}

#header li {

 float: left;

 background-image: url("images/tab_left.gif");

 background-repeat: no-repeat;

 margin: 0 1px 0 0;

 padding: 0 0 0 8px;

}

#header a {

 float: left;

 display: block;

 background-image: url("images/tab_right.gif");

 background-repeat: no-repeat;

 background-position: right top;

 padding: 0.2em 10px 0.2em 0;

 text-decoration: none;

 font-weight: bold;

 color: #333366;

}

#recipes #header li.recipes,

#contact #header li.contact,

#articles #header li.articles,

#buy #header li.buy {

 background-image: url("images/tab_active_left.gif");

}

#recipes #header li.recipes a,

#contact #header li.contact a,

#articles #header li.articles a,

#buy #header li.buy a {

 background-image: url("images/tab_active_right.gif");

 background-color: transparent;

 color:#FFFFFF;

}

113 Navigation

Discussion
The tabbed navigation approach I’ve used here is a basic version of Douglas Bow­

man’s Sliding Doors of CSS method, which is a tried and tested technique for creating

a tabbed interface.1 The structure that I’ve given to the navigation menu is the same

kind of simple unordered list that we’ve worked with throughout this chapter, except

that each list item is assigned a class attribute that describes the link it contains.

We’ve also wrapped the entire list in a div with an id of header. The technique

takes its name from the two images used to implement it—one overlaps the other,

and the images slide apart as the text size increases.

You’ll need four images to create this effect: two to create the regular tab color, and

two to use when the tab is the currently selected (highlighted) tab. The images I’ve

used in this example are shown in Figure 4.17. As you can see, they’re far wider

and taller than would generally be necessary for a tab—this provides plenty of space

for the tab to “grow” if the user’s browser is configured to display text at a very large

size.

Figure 4.17. The image files used to create the tabs

1 http://www.alistapart.com/articles/slidingdoors/

http://www.alistapart.com/articles/slidingdoors/
http://www.alistapart.com/articles/slidingdoors/

The CSS Anthology114

Here’s the basic list of navigation items:

tabs.html (excerpt)

<div id="header">
<ul id="tabnav">
 <li class="recipes">Recipes
 <li class="contact">Contact Us
 <li class="articles">Articles
 <li class="buy">Buy Online

</div>

The first step is to style the container that surrounds the navigation. We’re going to

give our header a simple bottom border for the purposes of this exercise, but on a

real-world site this container may hold other elements in addition to our tabs (such

as a logo or search field):

#header {

 float: left;

 width: 100%;

 border-bottom: 1px solid #8DA5FF;

 margin-bottom: 2em;

}

As you’ll have noticed, we float the header to the left. We’ll also float the individual

list items; floating the container that houses them ensures that they remain contained

once they’re floated, and that the border will display below them.

Next, we create a style rule for the ul element inside the header:

tabs.css (excerpt)

#header ul {
 margin: 0;
 padding: 2em 0 0 0;
 list-style: none;
}

115 Navigation

This rule removes the bullets and alters the margin and padding on our list—we’ve

added two ems of padding to the top of the ul element. Figure 4.18 shows the results

of our work so far.

Figure 4.18. Displaying the navigation after styling the ul element

Now we need to style the list items:

tabs.css (excerpt)

#header li {
 float: left;
 background-image: url("images/tab_left.gif");
 background-repeat: no-repeat;
 margin: 0 1px 0 0;
 padding: 0 0 0 8px;
}

This rule uses the float property to position the list items horizontally while

maintaining the block-level status of each. We then add the first of our “sliding

door” images—the thin left-hand side of the tab—as a background image. A single­

The CSS Anthology116

pixel right margin on the list item creates a gap between one tab and the next. Fig­

ure 4.19 shows that the left-hand tab image now appears for each tab.

Figure 4.19. The navigation tabs reflecting the new styles

Next, we style the links, completing the look of our tabs in their unselected state.

The image that forms the right-hand side of the tab is applied to each link, completing

the tab effect:

tabs.css (excerpt)

#header a {
 float: left;
 display: block;
 background-image: url("images/tab_right.gif");
 background-repeat: no-repeat;
 background-position: right top;
 padding: 0.2em 10px 0.2em 0;
 text-decoration: none;
 font-weight: bold;
 color: #333366;
}

117 Navigation

The results are shown in Figure 4.20.

Figure 4.20. Styling the navigation links

If you increase the text size in the browser, you can see that the tabs neatly increase

in size too. In fact, they do so without overlapping and without the text protruding

out of the tab—this is because we have used images that allow plenty of room for

growth.

To complete the tab navigation, we need to highlight the tab that corresponds to

the currently displayed page. You’ll recall that each list item has been assigned a

unique class name. If we assign to the body element an ID that has a value equal to

the value of each list item class, CSS can do the rest of the work:

tabs.html (excerpt)

<body id="recipes">

Although it looks like a lot of code, the CSS code that styles the tab matching the

body ID is relatively straightforward. The images I’ve used are exact copies of the

The CSS Anthology118

left and right images that we applied to the tabs, but they’re a different color, which

produces the effect of one tab appearing to be highlighted.

Here’s the CSS:

tabs.css (excerpt)

#recipes #header li.recipes,
#contact #header li.contact,
#articles #header li.articles,
#buy #header li.buy {
 background-image: url("images/tab_active_left.gif");
}

#recipes #header li.recipes a,
#contact #header li.contact a,
#articles #header li.articles a,
#buy #header li.buy a {
 background-image: url("images/tab_active_right.gif");
 background-color: transparent;
 color: #FFFFFF;
}

With these rules in place, specifying an ID of recipes to our body will cause the

Recipes tab to be highlighted, specifying contact will cause the Contact Us tab to be

highlighted, and so on. The results of this work are shown in Figure 4.21.

Identifying a Useful Technique

The technique of adding an ID to the body element can be very useful. For example,

you may have different color schemes for different sections of your site, to help

the user identify which section they’re using. You can simply add the section

name to the body element and make use of it within the style sheet, as we did in

this example.

119 Navigation

Figure 4.21. Highlighting the Contact Us tab by specifying contact as the ID of the body element

How do I change the cursor type?
It’s common for the cursor to change to a hand icon when the cursor’s moved over

a link on any part of the page. Occasionally—perhaps to fit in with a particular

interface—you might want to change the cursor to represent something else.

Solution
We change the cursor using the CSS cursor property. Table 4.1 identifies the

properties that are available in CSS 2, and how they appear in Internet Explorer 6;

Figure 4.22 shows this property in action.

The CSS Anthology120

Table 4.1. The CSS2.1 standard cursors

Appearance (in IE 6) cursor value

n/aauto

crosshair

default

e-resize

help

move

n-resize

ne-resize

nw-resize

pointer

s-resize

se-resize

sw-resize

text

w-resize

wait

121 Navigation

Figure 4.22. The cursor: help property causing the cursor to display as a question mark

Discussion
The cursor property can take a range of values. Changing the cursor display can

be a useful way for web applications with friendly interfaces to provide valuable

user feedback. For example, you might decide to use a question mark cursor to

indicate help text.

Changing the Cursor Can Cause Confusion!

You should use this effect with care, and keep in mind the fact that people are

generally used to standard browser behavior. For instance, users are used to seeing

the cursor represent a pointing hand icon when it’s hovered over a link.

Table 4.1 lists the various properties that are available in the CSS standard; these

are supported by most modern browsers, including Internet Explorer 6+, Safari,

Opera, and Firefox. Table 4.2 lists additional values that are supported only by In­

ternet Explorer browsers (although with each new release of Firefox comes improved

support for these extra values).

The CSS Anthology122

Table 4.2. Internet Explorer-only cursors

Appearance (as in IE6) cursor value

all-scroll

col-resize

hand

no-drop

not-allowed

progress

row-resize

custom imageaurl("url")

vertical-text
a At the time of writing, displaying a custom image for a cursor on a web page is only supported by

Firefox on Windows.

How do I create rollovers in CSS without
using JavaScript?
CSS-based navigation can provide some really interesting effects, but there are still

some effects that require the use of images. Is it possible to enjoy the advantages of

text-based navigation and still use images?

Solution
It is possible to combine images and CSS to create JavaScript-free rollovers. This

solution is based on a technique described at WellStyled.com.2 Here’s the code

you’ll need:

2 http://wellstyled.com/css-nopreload-rollovers.html

http://wellstyled.com/css-nopreload-rollovers.html
http://wellstyled.com/css-nopreload-rollovers.html

images.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Lists as navigation</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="images.css" />
</head>
<body>
<ul id="nav">
 Recipes
 Contact Us
 Articles
 Buy Online

</body>
</html>

images.css

ul#nav {
 list-style-type: none;
 padding: 0;
 margin: 0;
}
#nav a:link, #nav a:visited {
 display: block;
 width: 150px;
 padding: 10px 0 16px 32px;
 font: bold 80% Arial, Helvetica, sans-serif;
 color: #FF9900;
 background: url("peppers.gif") top left no-repeat;
 text-decoration: none;
}
#nav a:hover {
 background-position: 0 -69px;
 color: #B51032;
}
#nav a:active {
 background-position: 0 -138px;

123Navigation

The CSS Anthology124

color: #006E01;

}

The results can be seen in Figure 4.23, but to enjoy the full effect I suggest you try

it for yourself. Don’t forget to click on a link or two!

Figure 4.23. Using images to advantage in the completed menu

Discussion
This solution offers a means of using images in your navigation without having to

resort to preloading lots of separate files.

The navigation has three states, but these states aren’t depicted using three separate

images. Instead, we use one large image that contains images for all three states, as

shown in Figure 4.24.

125Navigation

Figure 4.24. The pepper image containing images for all three rollover states

The navigation is marked up as a simple list:

images.html (excerpt)

<ul id="nav">
 Recipes
 Contact Us
 Articles
 Buy Online

We control the display of the background image within the declaration block for

the navigation links. However, because the image is far bigger than the area required

for this element, we only see the yellow pepper at first:

images.css (excerpt)

#nav a:link, #nav a:visited {
 display: block;
 width: 150px;
 padding: 10px 0 16px 32px;
 font: bold 80% Arial, Helvetica, sans-serif;
 color: #FF9900;
 background: url("peppers.gif") top left no-repeat;
 text-decoration: none;
}

When the :hover state is activated, the background image moves up the exact

number of pixels required to reveal the red pepper. In this example, I had to move

it by 69 pixels, but this figure will vary depending on the image that you use. You

could probably work it out mathematically, or you could do as I do and simply in­

The CSS Anthology126

crement the background position a few pixels at a time, until it appears in the right

location on hover:

images.css (excerpt)

#nav a:hover {
 background-position: 0 -69px;
 color: #B51032;
}

When the :active state is activated, the background image shifts again, this time

to display the green pepper when the link is clicked:

images.css (excerpt)

#nav a:active {
 background-position: 0 -138px;
 color: #006E01;
}

That’s all there is to it! The effect can fall apart if the user resizes the text in the

browser to a larger font, which allows the edges of the hidden images to display.

You can anticipate this eventuality to some degree by leaving quite a large space

between each of the three images—keep this in mind when preparing your images.

Image Flickering in Internet Explorer

This technique sometimes causes the navigation to “flicker” in Internet Explorer.

In my tests, this only tends to be a problem when the image is larger than the ones

we’ve used here; however, if your navigation items flicker, a well-documented

remedy is available.3

How can I create pure CSS drop-down
menus?
In Chapter 4, we learned to create image- and JavaScript-free rollovers. Can the same

be achieved for drop-down menus?

3 http://wellstyled.com/css-nopreload-rollovers.html

http://wellstyled.com/css-nopreload-rollovers.html
http://wellstyled.com/css-nopreload-rollovers.html
http://wellstyled.com/css-nopreload-rollovers.html

127Navigation

Solution
The answer is yes … but the resulting menus don’t work in Internet Explorer 6!

Nevertheless, Figure 4.25 illustrates this interesting technique, which will become

more useful as Internet Explorer 7 gains market share.

Figure 4.25. Creating a CSS-only drop-down menu

Here’s the markup used for this example:

menus.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>CSS Flyout menus</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="menus.css" />
</head>
<body>
<ul id="nav">
 Starters

 Fish
 Fruit
 Soups

The CSS Anthology128

 Main courses

 Meat

 Fish

 Vegetarian

 Desserts

 Fruit

 Puddings

 Ice Creams

</body>

</html>

And here are the style rules to implement this effect:

menus.css

body {
 font: 1em Verdana, Arial, sans-serif;
 background-color: #FFFFFF;
 color: #000000;
 margin: 1em 0 0 1em;
}
#nav, #nav ul {
 padding: 0;
 margin: 0;
 list-style: none;
}
#nav li {
 float: left;
 position: relative;
 width: 10em;
 border: 1px solid #B0C4DE;
 background-color: #E7EDF5;
 color: #2D486C;
 font-size: 80%;
 margin-right: 1em;

129Navigation

}

#nav a:link, #nav a:visited {

 display: block;

 text-decoration: none;

 padding-left: 1em;

 color: #2D486C;

}

* html #nav a {

 width: 100%;

}

#nav ul {

 display: none;

 position: absolute;

 padding: 0;

}

#nav ul li {

 border: 0 none transparent;

 border-bottom: 1px solid #E7EDF5;

 border-top: .5em solid #FFF;

 background-color: #F1F5F9;

 font-size: 100%;

 margin-bottom: -1px;

 margin-top: 1px;

 padding: 0;

}

#nav li:hover ul {

 display: block;

}

Discussion
Though this attractive and easy effect will not work in Internet Explorer 6, it is

supported by several other, newer browsers. This solution allows you to create a

drop-down menu without using any JavaScript at all. The technique is based on

the Suckerfish Dropdowns solution detailed on A List Apart.4

The menus themselves are based on simple unordered lists. The top-level menu

items consist of one main list; the items that fall under each main item are contained

in nested lists:

4 http://www.alistapart.com/articles/dropdowns/

http://www.alistapart.com/articles/dropdowns/
http://www.alistapart.com/articles/dropdowns/

The CSS Anthology130

menus.html (excerpt)

<ul id="nav">
 Starters

 Fish
 Fruit
 Soups

⋮

As you can see in Figure 4.26, when styles aren’t applied to the menu, the page

displays as a logically structured, unordered list with subsections that are easy to

spot.

Figure 4.26. Displaying lists logically in browsers that don’t support CSS

To begin with, we style the top-level menu, removing its list style. We also float the

list items to the left so that they stack horizontally. The list items are given a

position value of relative so that we can position our fly-out menus within them

later on:

131 Navigation

menus.css (excerpt)

#nav, #nav ul {
⋮
list-style: none;

}
#nav li {
float: left;
position: relative;

 width: 10em;
⋮

 margin-right: 1em;
}

We coerce the links in the menu to display as blocks, so they fill the rectangular

areas defined by the menu items. Internet Explorer 6 (and earlier) doesn’t recognize

this; however, setting the width of each link to 100% ensures that our clickable re­

gion expands to fill the containing block.

menus.css (excerpt)

#nav a:link, #nav a:visited {
display: block;
⋮

}
* html #nav a {
 width: 100%;
}

Next, we style the nested lists that constitute our fly-out menus so that, by default,

they are not displayed (display: none). We do, however, specify that absolute

positioning is to be used when they are displayed, so that they don’t affect the flow

of the rest of the document:

menus.css (excerpt)

#nav ul {
display: none;

 position: absolute;
⋮

}

The CSS Anthology132

To prevent our fly-out menu list items from being floated horizontally the way the

main menu items are, we need to set their float property to none:

menus.css (excerpt)

#nav ul li {
float: none;
⋮

}

Finally, we use the :hover pseudo-class to display the fly-out menu within any

main menu item when the cursor is moved over it:

menus.css (excerpt)

#nav li:hover ul {
 display: block;
}

With these basic CSS rules in place, the menus display as shown in Figure 4.27.

Figure 4.27. Altering the menu display with the addition of basic CSS

This code initially sets the nested lists to display: none. When the user hovers

the cursor over a main menu list item, the property of the nested list within that

list item is set to display: block, and the menu appears. However, this approach

133Navigation

doesn’t work in Internet Explorer, as in that browser the :hover pseudo-class works

only on links—not on any other element.

The rest of the CSS simply applies visual styles to make the menus look good.

Falling Between the Cracks

When a fly-out menu opens, the user must move the cursor down to the fly-out

menu items to select one. If, in this motion, the cursor moves outside of the list

item that opened the fly-out menu, the menu will close immediately, as the

:hover pseudo-class will no longer be in effect.

Looking at the style rules for this page, you can see that we use absolute positioning

to display the nested list over the top of the rest of the page content without dis­

turbing it.

In theory, we should be able to leave a little space between the top-level menu

item and the fly-out menu simply by adding margin to the top of the list; however,

in Internet Explorer 7 the fly-out menu will disappear if the cursor passes over a

margin area, rendering the menu unusable. Instead, I’ve created the effect by ap­

plying a white border to the top of the menu.

I’ve also added a very small margin to the top of each list item, and a negative

margin of the same amount to the bottom. This has the effect of shifting our menu

down by one pixel—just enough to ensure that our white border doesn’t cover up

the bottom of our top-level menu item.

menus.css (excerpt)

#nav ul li {

 border: 0 none transparent;

 border-bottom: 1px solid #E7EDF5;

border-top: .5em solid #FFF;

 background-color: #F1F5F9;

 font-size: 100%;

margin-bottom: -1px;

 margin-top: 1px;

 padding: 0;

}

The CSS Anthology134

Accessibility Concerns

When you’re using any drop-down menu—with or without JavaScript—make sure

that users who don’t see the full effect of the menus are still able to move around

your site.

In the case of this example, users who don’t have CSS support will see the expan­

ded nested lists, and will be able to navigate through the site. Anyone who uses

a browser that doesn’t support the display of the submenus, such as Internet Ex­

plorer 6, will still be able to navigate so long as the pages to which the top-level

menu items link contain links to all the pages in that section’s submenu.

Any menu system that prevents users whose browsers don’t support it from nav­

igating the site is bad news.

Summary
This chapter has discussed a range of different ways in which we can create navig­

ation using structurally sound markup, and provided examples that can be used as

starting points for your own experiments.

On existing sites where a full redesign is not possible, introducing a CSS-based

navigation system can be a good way to improve the site’s accessibility and load

speed without affecting its look and feel in a big way.

Chapter5
Tabular Data
Tables have had bad press of late. Originally designed to display tabular data cor­

rectly in HTML documents, they were soon misappropriated as a way to lay out

web pages. Until recently, understanding how to create complex layouts using

nested tables had become part of the standard skill set of the web designer. However,

using tables in this way requires large amounts of markup and can cause real

problems for users who are trying to access content using screen readers or other

text-only devices. Thus, the Web Standards movement has pushed for the replace­

ment of tabular layouts with CSS, which is designed for the job and is, ultimately,

far more flexible, as we’ll discover in Chapter 9.

But, what of the poor table? Is it to be relegated to out-of-date web-building tools

gathering dust in the far corners of the Net? Not quite! It’s true that tables are becom­

ing less popular as layout tools, as designers take on the newer CSS techniques for

which browser support is becoming widespread. However, tables can (and should)

still be used for their true purpose—that of displaying tabular data.

This chapter will illustrate some common, correct uses of tables, incorporating

elements and attributes that, though they’re not used frequently, help to make your

The CSS Anthology136

tables accessible. We’ll also look at how CSS can be used to make these tables more

attractive and usable for those viewing them in a web browser.

How do I lay out spreadsheet data
using CSS?
Solution
The quick answer is, you don’t! Spreadsheet data is tabular by nature and, therefore,

should be displayed in an HTML table. However, that doesn’t mean that we’re

resigned to the dull and uninspiring style in which tables display by default,

though—we can still spruce them up using CSS, as we’ll see later in this chapter.

And we should still be concerned about the accessibility of our tables, even when

we’re using them to display the right kind of content.

Discussion
Tabular data is information that’s displayed in a table, and which may logically be

arranged into columns and rows.

Your accounts, stored in spreadsheet format, are a good example of tabular data. If

you needed to mark up the annual accounts of an organization for which you were

building a site, you might be given a spreadsheet that looked like Figure 5.1.

Figure 5.1. Displaying the accounts information as tabular data in Excel

137Tabular Data

Obviously, this is tabular data. We see column and row headings to which the data

in each cell relates. Ideally, we’d display this data in a table, as shown in Figure 5.2,

complete with table headings to ensure that the data’s structured logically.

Figure 5.2. The accounts data formatted as an HTML table

How do I ensure that my tabular data is
accessible as well as attractive?
Solution
The (X)HTML table specification includes elements and attributes that go beyond

the basics required to achieve a certain look for tabular data. These extra parts of

the table, which are often omitted by web developers, though they’re easy to imple­

ment, can be used to ensure that the content of the table is clear when it’s read out

to visually impaired users who can’t see the layout for themselves. Take a look at

this example:

table.html (excerpt)

<table summary="This table shows the yearly income for years 1999
 through 2002">

The CSS Anthology138

<caption>Yearly Income 1999 - 2002</caption>

 <tr>

 <th></th>

 <th scope="col">1999</th>

 <th scope="col">2000</th>

 <th scope="col">2001</th>

 <th scope="col">2002</th>

 </tr>

 <tr>

 <th scope="row">Grants</th>

 <td>11,980</td>

 <td>12,650</td>

 <td>9,700</td>

 <td>10,600</td>

 </tr>

 <tr>

 <th scope="row">Donations</th>

 <td>4,780</td>

 <td>4,989</td>

 <td>6,700</td>

 <td>6,590</td>

 </tr>

 <tr>

 <th scope="row">Investments</th>

 <td>8,000</td>

 <td>8,100</td>

 <td>8,760</td>

 <td>8,490</td>

 </tr>

 <tr>

 <th scope="row">Fundraising</th>

 <td>3,200</td>

 <td>3,120</td>

 <td>3,700</td>

 <td>4,210</td>

 </tr>

 <tr>

 <th scope="row">Sales</th>

 <td>28,400</td>

 <td>27,100</td>

 <td>27,950</td>

 <td>29,050</td>

 </tr>

 <tr>

139Tabular Data

<th scope="row">Miscellaneous</th>

 <td>2,100</td>

 <td>1,900</td>

 <td>1,300</td>

 <td>1,760</td>

 </tr>

 <tr>

 <th scope="row">Total</th>

 <td>58,460</td>

 <td>57,859</td>

 <td>58,110</td>

 <td>60,700</td>

 </tr>

</table>

Discussion
The above markup creates a table that uses elements and attributes to explain clearly

the content of each cell. Let’s discuss the value that each of these elements and at­

tributes adds.

The summary Attribute of the table Element

table.html (excerpt)

<table summary="This table shows the yearly income for years 1999
 through 2002">

A table’s summary will not be visible to browser users, but will be read out to visitors

with screen readers. We use the summary attribute to make sure that screen reader

users understand the purpose and context of the table—information that, while

apparent to the sighted user with a standard browser, might be less apparent when

the text is being read in a linear manner by the screen reader.

The caption Element

table.html (excerpt)

 <caption>Yearly Income 1999 - 2002</caption>

The CSS Anthology140

The caption element adds a caption to the table. By default, browsers generally

display the caption above the table, however, you can manually set the position of

the caption in relation to the table using the caption-side CSS property.

table {

 caption-side: bottom;

}

Why might you want to use a caption, instead of just adding a heading or paragraph

text for display with the table? By using a caption, you can ensure that the text is

tied to the table, and that it’s recognized as the table’s caption—there’s no chance

that the screen reader could interpret it as a separate element. If you want your table

captions to display as paragraph text or level three headings in a graphical browser,

no problem! You can create CSS rules for captions just as you would for any other

element.

The th Element

 <th scope="col">2000</th>

The th element identifies data that’s a row or column heading. The example markup

contains both row and column headings and, to ensure that this is clear, we use the

scope attribute of the <th> tag. The scope attribute shows whether a given heading

is applied to the column (col) or row (row).

Before you begin to style your tables to complement the look and feel of the site,

it’s good practice to ensure that those tables are accessible to users of devices such

as screen readers. Accessibility is one of those things that many developers brush

off, saying, “I’ll check it when I’m finished.” However, if you leave accessibility

checks until the end of development, you may never get around to them; if you do,

the problems they identify may well require time-consuming fixes, particularly in

complex applications. Once you get into the habit of keeping accessibility in mind

as you design, you’ll find that it becomes second nature and adds very little to a

project’s development time.

CSS attributes make the styling of data tables simple and quick. For instance, when

I begin a new site on which I know I’ll have to use a lot of data tables, I create a

class called .datatable, which contains the basic styles that I want to affect all

141 Tabular Data

data tables, and can easily be applied to the <table> tag of each. I then create rules

for .datatable th (the heading cells), .datatable td (the regular cells), and

.datatable caption (the table captions).

From that point, adding a new table is easy. All the styles are there—I just need to

apply the .datatable class. If I decide to change the styles after I’ve created all the

tables in my site, I simply edit my style sheet.

How do I add a border to a table without
using the HTML border attribute?
Solution
The HTML border attribute doesn’t create the prettiest of borders for tables, and

it’s deprecated in current versions of (X)HTML. You can replace this border with a

CSS border, which will give you far more flexibility in terms of design. Here’s how

we’d set a border:

table.css (excerpt)

.datatable {
 border: 1px solid #338BA6;
}

This style rule will display a one-pixel, light-blue border around your table, as in

Figure 5.3.

You can also add borders to individual cells:

table.css (excerpt)

.datatable td, .datatable th {
 border: 1px solid #73C0D4;
}

This style rule renders a slightly lighter border around td and th table cells that

have a class of datatable, as Figure 5.4 shows.

The CSS Anthology142

Figure 5.3. Applying a CSS border to the table as a whole

Figure 5.4. Applying a CSS border to individual table cells

Discussion
By experimenting with CSS borders on your tables, you can create countless attract­

ive effects—even if the data those tables contain is thoroughly dull! You can use

differently colored borders for table headings and table cells, and apply various

thicknesses and styles of border to table cells. You might even try out such tricks

143Tabular Data

as using one shade for top and left borders, and another for bottom and right borders,

to create an indented effect.

We can apply a range of different values to the CSS border-style property. We’ve

already met solid, which displays a solid line as the border, and this is shown

along with the other available options in Table 5.1.

Table 5.1. CSS border style constants

SampleSupporting Browsers Constant

All CSS browsers double

groove

inset

none

outset

ridge

solid

Safari, Opera, Firefox, IE 5.5+ dashed

Safari, Opera, Firefox, IE 7 dotted

Safari, Opera, Firefox, IE 5.5+ hidden

The CSS Anthology144

How do I stop spaces appearing between
the cells of my table when I’ve added
borders using CSS?
If you’ve ever tried to get rid of the spaces between table cells, you might have used

the table attribute cellspacing="0". This would have left you with a two-pixel

border, though, because borders touch, but don’t overlap. This solution explains

how to create a neat, single-pixel border around all cells.

Solution
You can get rid of the spaces that appear between cells by setting the CSS

border-collapse property for the table to collapse:

table.css

.datatable {
 border: 1px solid #338BA6;
 border-collapse: collapse;
}

.datatable td, .datatable th {
 border: 1px solid #73C0D4;
}

Figure 5.4 shows a table before the border-collapse property is applied; Figure 5.5

shows the effect of this property on the display.

145Tabular Data

Figure 5.5. Collapsing the table’s borders

How do I display spreadsheet data in an
attractive and usable way?
Solution
The (X)HTML table is the best way to structure spreadsheet data, but it’s not the

most attractive. Luckily, we can style the table using CSS, which keeps markup to

a minimum and allows us to control our data table’s appearance from the style

sheet.

The data we saw displayed as an HTML table earlier in this chapter is an example

of spreadsheet data. That markup, which is shown unstyled in Figure 5.6, forms

the basis for the following example.

The CSS Anthology146

Figure 5.6. Unformatted, unattractive tabular data

Let’s apply the following style sheet to that table:

spreadsheet.css

body {
 font: 0.8em Verdana, Geneva, Arial, Helvetica, sans-serif;
}

.datatable {
 border: 1px solid #D6DDE6;
 border-collapse: collapse;
}
.datatable td, .datatable th {
 border: 1px solid #D6DDE6;
 text-align: right;
 padding: 0.2em;
}
.datatable th {
 border: 1px solid #828282;
 background-color: #BCBCBC;
 font-weight: bold;
 text-align: left;
 padding: 0.2em;
}

.datatable caption {

147Tabular Data

font: bold 120% "Times New Roman", Times, serif;

 background-color: #B0C4DE;

 color: #33517A;

 padding: 0.4em 0 0.3em 0;

 border: 1px solid #789AC6;

}

Figure 5.7 shows the result, which is quite attractive, if I do say so myself!

Figure 5.7. A more attractive table formatted with CSS

Discussion
In this solution, I aimed to display the table in a way that’s similar to the appearance

of a desktop spreadsheet. First, I provided a basic rule for the body—this is the kind

of rule that would be likely to appear in the style sheet of any CSS-styled site:

spreadsheet.css (excerpt)

body {
 font: 0.8em Verdana, Geneva, Arial, Helvetica, sans-serif;
}

The CSS Anthology148

Next, I styled the table as a whole:

spreadsheet.css (excerpt)

.datatable {
 border: 1px solid #D6DDE6;
 border-collapse: collapse;
}

As we’ve already seen, border displays a border around the outside of the table,

while border-collapse removes spaces between the table’s cells.

Next, I turned my attention to the table cells:

spreadsheet.css (excerpt)

.datatable td {
 border: 1px solid #D6DDE6;
 text-align: right;
 padding: 0.2em
}

Here, I added a border to the table cells and used text-align to right-align their

contents for that spreadsheety look. If you preview the document at this point, you’ll

see a border around each cell in the table, except the header cells, as shown in

Figure 5.8.

149Tabular Data

Figure 5.8. Applying the border property to the table and td elements

Next, I added a border to the th (heading) cells. I used a darker color for this border,

because I also added a background color to these cells to highlight the fact that

they’re headings, not regular cells:

spreadsheet.css (excerpt)

.datatable th {
 border: 1px solid #828282;
 background-color: #BCBCBC;
 font-weight: bold;
 text-align: left;
 padding: 0.2em;
}

To complete the table, I styled the caption to make it look like part of the table:

spreadsheet.css (excerpt)

.datatable caption {
 font: bold 0.9em "Times New Roman", Times, serif;
 background-color: #B0C4DE;
 color: #33517A;

The CSS Anthology150

padding: 0.4em 0 0.3em 0;

 border: 1px solid #789AC6;

}

How do I display table rows in alternating
colors?
Solution
It can be difficult to ensure that you remain on a particular row as your eyes work

across a large table of data. Displaying table rows in alternating colors is a common

way to help users identify which row they’re focused on. Whether you’re adding

rows by hand, or you’re displaying the data from a database, you can use CSS classes

to create this effect.

Here’s the table markup you’ll need:

alternate.html (excerpt)

<table summary="List of new students 2003" class="datatable">
 <caption>Student List</caption>
 <tr>
 <th scope="col">Student Name</th>
 <th scope="col">Date of Birth</th>
 <th scope="col">Class</th>
 <th scope="col">ID</th>

 </tr>
 <tr>
 <td>Joe Bloggs</td>
 <td>27/08/1997</td>
 <td>Mrs Jones</td>
 <td>12009</td>

 </tr>
 <tr class="altrow">
 <td>William Smith</td>
 <td>20/07/1997</td>
 <td>Mrs Jones</td>
 <td>12010</td>

 </tr>
 <tr>

151 Tabular Data

<td>Jane Toad</td>

 <td>21/07/1997</td>

 <td>Mrs Jones</td>

 <td>12030</td>

 </tr>

 <tr class="altrow">

 <td>Amanda Williams</td>

 <td>19/03/1997</td>

 <td>Mrs Edwards</td>

 <td>12021</td>

 </tr>

 <tr>

 <td>Kylie Jameson</td>

 <td>18/05/1997</td>

 <td>Mrs Jones</td>

 <td>12022</td>

 </tr>

 <tr class="altrow">

 <td>Louise Smith</td>

 <td>17/07/1997</td>

 <td>Mrs Edwards</td>

 <td>12019</td>

 </tr>

 <tr>

 <td>James Jones</td>

 <td>04/04/1997</td>

 <td>Mrs Edwards</td>

 <td>12007</td>

 </tr>

</table>

Here’s the CSS to style it:

alternate.css (excerpt)

body {
 font: 0.8em Arial, Helvetica, sans-serif;
}
.datatable {
 border: 1px solid #D6DDE6;
 border-collapse: collapse;
 width: 80%;
}
.datatable td {

The CSS Anthology152

border: 1px solid #D6DDE6;

 padding: 0.3em;

}

.datatable th {

 border: 1px solid #828282;

 background-color: #BCBCBC;

 font-weight: bold;

 text-align: left;

 padding-left: 0.3em;

}

.datatable caption {

 font: bold 110% Arial, Helvetica, sans-serif;

 color: #33517A;

 text-align: left;

 padding: 0.4em 0 0.8em 0;

}

.datatable tr.altrow {

 background-color: #DFE7F2;

 color: #000000;

}

The result can be seen in Figure 5.9.

Figure 5.9. Using alternating row colors to help people use large tables of data

153Tabular Data

Discussion
I applied the altrow class to every second row of the HTML table above:

alternate.html (excerpt)

<tr class="altrow">

In the CSS, I styled the table using properties that will be familiar if you’ve looked

at the previous solutions in this chapter. I also added the following class:

alternate.css (excerpt)

.datatable tr.altrow {
 background-color: #DFE7F2;
 color: #000000;
}

This class will be applied to all tr elements with a class of altrow that appear

within a table that has a class of datatable.

If you’re creating your table dynamically—for instance, using ASP, PHP, or a similar

technology to pull data from a database—then, to create the alternating row effect,

you must write this class out for every second row that you display.

How do I change a row’s background color
when the cursor hovers over it?
Solution
One way to boost the readability of tabular data is to change the color of the rows

as users move the cursor over them, to highlight the row they’re reading, as Fig­

ure 5.10 shows.

The CSS Anthology154

Figure 5.10. Highlighting a row on mouseover

This can be a very simple solution. In Internet Explorer 7 and Mozilla-based browsers

(including Netscape, Firefox, and so on), all you need to do to create this effect is

add the following rule to your CSS:

alternate.css (excerpt)

.datatable tr:hover {
 background-color: #DFE7F2;
 color: #000000;
}

Job done!

Discussion
This solution will work in all recent browsers—including Internet Explorer 7—but

it will not work in Internet Explorer 6 or earlier. However, as long as your tables

are clear without this highlighting effect in place, the highlight feature could be

regarded as a “nice to have,” rather than a necessary tool without which the site

will be unusable.

155Tabular Data

If you must get this feature working for Internet Explorer 6 users, you can use some

simple JavaScript to implement the effect. To change a row’s background color

when the cursor moves over it in Internet Explorer 6 and earlier, you must first also

apply the desired style properties to a CSS class, which I’ve named hilite in this

example:

hiliterow.css (excerpt)

.datatable tr:hover, .datatable tr.hilite {
 background-color: #DFE7F2;
 color: #000000;
}

Then, add the following JavaScript code to your page after the table:

hiliterow.html (excerpt)

<script type="text/javascript">
var rows = document.getElementsByTagName('tr');
for (var i = 0; i < rows.length; i++) {
 rows[i].onmouseover = function() {
 this.className += ' hilite';

 }
 rows[i].onmouseout = function() {
 this.className = this.className.replace('hilite', '');

 }
}
</script>

This code locates all the <tr> tags in the document and assigns a mouseover and

mouseout event handler to each. These event handlers apply the CSS hilite class

to the rows when the cursor is moved over them, and removes it when the cursor

moves away. As you can see in Figure 5.11, this combination of CSS and HTML

produces the desired effect.

The CSS Anthology156

Figure 5.11. Highlighting a row in Internet Explorer 6 with the help of JavaScript

The JavaScript code works by setting a tag’s CSS class dynamically. In this case,

we add the hilite class to a <tr> tag when the mouseover event is triggered, as

captured by the onmouseover property:

hiliterow.html (excerpt)

 rows[i].onmouseover = function() {
 this.className += ' hilite';

 }

We then remove the class when the mouseout event is fired:

hiliterow.html (excerpt)

 rows[i].onmouseout = function() {
 this.className = this.className.replace('hilite', '');

 }

You can create very attractive, subtle effects by changing the class of elements in

response to user actions using JavaScript. Another way in which you could use this

technique would be to highlight a content area by changing the class applied to a

div when the mouseover event for that element is triggered.

157Tabular Data

Unobtrusive JavaScript

You might have noticed that we didn’t add any JavaScript to the table itself—in­

stead, we did our work within the script element only. This technique is called

unobtrusive JavaScript—it aims to keep JavaScript separate from your document

in the same way that we keep the presentation of CSS separate from the markup.

The JavaScript needs to run after the table has loaded, because until that point,

there are no rows for the JavaScript to work on. Another approach would be to

write a function that runs when the page has completed loading—this would mean

that you could keep the JavaScript in a separate file that’s linked to from your

page.

How do I display table columns in
alternating colors?
While alternate row colors are quite a common feature of data tables, we see altern­

ately colored columns less frequently. However, they can be a helpful way to show

groupings of data.

Solution
If we use the col element to describe our table’s columns, we can employ CSS to

add a background to those columns. You can see the col elements I’ve added—one

for each column—in the table markup below. I’ve also added classes to them in

much the same way that we added a class to the table’s rows in “How do I display

table rows in alternating colors?”.

columns.html (excerpt)

<table class="datatable">
 <col class="odd" />
 <col class="even" />
 <col class="odd" />
 <col class="even" />

 <tr>
 <th>Pool A</th>
 <th>Pool B</th>

The CSS Anthology158

<th>Pool C</th>

 <th>Pool D</th>

 </tr>

 <tr>

 <td>England</td>

 <td>Australia</td>

 <td>New Zealand</td>

 <td>France</td>

 </tr>

 <tr class="even">

 <td>South Africa</td>

 <td>Wales</td>

 <td>Scotland</td>

 <td>Ireland</td>

 </tr>

 <tr>

 <td>Samoa</td>

 <td>Fiji</td>

 <td>Italy</td>

 <td>Argentina</td>

 </tr>

 <tr class="even">

 <td>USA</td>

 <td>Canada</td>

 <td>Romania</td>

 <td>Europe 3</td>

 </tr>

 <tr>

 <td>Repechage 2</td>

 <td>Asia</td>

 <td>Repechage 1</td>

 <td>Namibia</td>

 </tr>

</table>

We can add style rules for the classes we applied to our col elements, as shown

here; the result is depicted in Figure 5.12:

columns.css (excerpt)

body {
 font: 0.8em Arial, Helvetica, sans-serif;
}
.datatable {
 border: 1px solid #D6DDE6;
 border-collapse: collapse;
 width: 80%;
}

.datatable col.odd {
 background-color: #80C9FF;
 color: #000000;
}

.datatable col.even {
 background-color: #BFE4FF;
 color: #000000;
}

.datatable td {
 border:2px solid #ffffff;
 padding: 0.3em;
}

.datatable th {
 border:2px solid #ffffff;
 background-color: #00487D;
 color: #FFFFFF;
 font-weight: bold;
 text-align: left;
 padding: 0.3em;
}

159Tabular Data

The CSS Anthology160

Figure 5.12. Creating alternately striped columns by styling the col element

Discussion
The col element provides us with further flexibility for styling a table’s columns

to ensure that they’re visually distinct, thus making our table attractive and easier

to understand. It’s also possible to nest col elements within a colgroup element,

which allows us to control the appearance of columns by applying style rules to

the parent colgroup element. If a colgroup element is not present, the browser as­

sumes that your table contains one single colgroup that houses all of your col ele­

ments.

Here’s an example of nested col elements:

colgroups.html (excerpt)

<table class="datatable">
<colgroup class="odd">
 <col />
 <col />
</colgroup>
<colgroup class="even">
 <col />
 <col />
</colgroup>
…

Here are the style rules, which are applied to the colgroup element, rather than to

col:

161 Tabular Data

colgroups.css (excerpt)

.datatable colgroup.odd {
 background-color: #80C9FF;
 color: #000000;
}

.datatable colgroup.even {
 background-color: #BFE4FF;
 color: #000000;
}

The result of this change is a table with two columns of one color, and two of another,

as shown in Figure 5.13.

Figure 5.13. Styling columns using colgroup

How do I display a calendar using CSS?
Calendars, such as the example from a desktop application shown in Figure 5.14,

also involve tabular data. The days of the week along the top of the calendar represent

the headings of the columns. Therefore, a calendar’s display constitutes the legitimate

use of a table, but you can keep markup to a minimum by using CSS to control the

look and feel.

The CSS Anthology162

Figure 5.14. A calendar from a desktop application

Solution
Our solution uses an accessible, simple table that leverages CSS styles to create the

attractive calendar shown in Figure 5.15. Given its simple structure, it’s ideal for

use in a database-driven application in which the table is created via server-side

code:

cal.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Calendar</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="cal.css" />
</head>
<body>
<table class="clmonth" summary="Calendar for May 2007">

163Tabular Data

<caption>May 2007</caption>

 <tr>

 <th scope="col">Monday</th>

 <th scope="col">Tuesday</th>

 <th scope="col">Wednesday</th>

 <th scope="col">Thursday</th>

 <th scope="col">Friday</th>

 <th scope="col">Saturday</th>

 <th scope="col">Sunday</th>

 </tr>

 <tr>

 <td class="previous">31</td>

 <td class="active">1

 New pupils' open day

 Year 8 theater trip

 </td>

 <td>2</td>

 <td>3</td>

 <td>4</td>

 <td>5</td>

 <td>6</td>

 </tr>

 <tr>

 <td class="active">7

 Year 7 English exam

 </td>

 <td>8</td>

 <td>9</td>

 <td>10</td>

 <td>11</td>

 <td>12</td>

 <td>13</td>

 </tr>

 <tr>

 <td>14</td>

 <td>15</td>

 <td>16</td>

 <td class="active">17

 Sports Day

 </td>

 <td class="active">18

The CSS Anthology164

 Year 7 parents' evening

 Prizegiving

 </td>

 <td>19</td>

 <td>20</td>

 </tr>

 <tr>

 <td>21</td>

 <td>22</td>

 <td>23</td>

 <td class="active">24

 Year 8 parents' evening

 </td>

 <td>25</td>

 <td>26</td>

 <td>27</td>

 </tr>

 <tr>

 <td>28</td>

 <td>29</td>

 <td class="active">30

 First night of school play

 </td>

 <td>31</td>

 <td class="next">1</td>

 <td class="next">2</td>

 <td class="next">3</td>

 </tr>

</table>

</body>

</html>

cal.css

body {
 background-color: #ffffff;
 color: #000000;
 font-size: 90%;
}
.clmonth {
 border-collapse: collapse;

165Tabular Data

width: 780px;

}

.clmonth caption {

 text-align: left;

 font: bold 110% Georgia, "Times New Roman", Times, serif;

padding-bottom: 0.4em;

}

.clmonth th {

 border: 1px solid #AAAAAA;

 border-bottom: none;

 padding: 0.2em 0.6em 0.2em 0.6em;

 background-color: #CCCCCC;

 color: #3F3F3F;

 font: 80% Verdana, Geneva, Arial, Helvetica, sans-serif;

 width: 110px;

}

.clmonth td {

 border: 1px solid #EAEAEA;

 font: 80% Verdana, Geneva, Arial, Helvetica, sans-serif;

 padding: 0.2em 0.6em 0.2em 0.6em;

 vertical-align: top;

}

.clmonth td.previous, .clmonth td.next {

 background-color: #F6F6F6;

 color: #C6C6C6;

}

.clmonth td.active {

 background-color: #B1CBE1;

 color: #2B5070;

 border: 2px solid #4682B4;

}

.clmonth ul {

 list-style-type: none;

 margin: 0;

 padding-left: 1em;

 padding-right: 0.6em;

}

.clmonth li {

 margin-bottom: 1em;

}

The CSS Anthology166

Figure 5.15. The completed calendar styled with CSS

Discussion
This example starts out as a very simple table. It has a caption, which is the month

we’re working with, and I’ve marked up the days of the week as table headers using

the <th> tag:

cal.html (excerpt)

<table class="clmonth" summary="Calendar for May 2007">
 <caption>May 2007</caption>
 <tr>
 <th scope="col">Monday</th>
 <th scope="col">Tuesday</th>
 <th scope="col">Wednesday</th>
 <th scope="col">Thursday</th>
 <th scope="col">Friday</th>
 <th scope="col">Saturday</th>
 <th scope="col">Sunday</th>

 </tr>

167Tabular Data

The table has a class of clmonth. I’ve used a class rather than an ID because, in some

situations, you might want to display more than one month on the page. If you then

found that you needed to give the table an ID—perhaps to allow you to show and

hide the table using JavaScript—you could add an ID as well as the class.

The days are held within individual table cells, and the events for each day are

marked up as a list within the appropriate table cell.

In the markup below, you can see that I’ve added classes to two of the table cells.

Class previous is applied to cells containing days that fall within the preceding

month (we’ll use next later for days in the following month); class active is applied

to cells that contain event information, in order that we may highlight them:

cal.html (excerpt)

<tr>
 <td class="previous">31</td>
 <td class="active">1

 New pupils' open day
 Year 8 theater trip

 </td>
 <td>2</td>
 <td>3</td>
 <td>4</td>
 <td>5</td>
 <td>6</td>
</tr>

The table, without CSS, displays as shown in Figure 5.16.

The CSS Anthology168

Figure 5.16. Displaying the calendar without CSS

Now that we have the structural markup in place, we can style the calendar. I set a

basic style for the body, including a base font size. I then set a style for the class

clmonth in order for the borders to collapse, leaving no space between cells, and

set a width for the table:

cal.css (excerpt)

body {
 background-color: #ffffff;
 color: #000000;
 font-size: 90%;
}
.clmonth {
 border-collapse: collapse;
 width: 780px;
}

169Tabular Data

I styled the caption within the class clmonth, then created styles for the table

headers (th) and table cells (td):

cal.css (excerpt)

.clmonth caption {
 text-align: left;
 font: bold 110% Georgia, "Times New Roman", Times, serif;
padding-bottom: 0.4em;

}
.clmonth th {
 border: 1px solid #AAAAAA;
 border-bottom: none;
 padding: 0.2em 0.6em 0.2em 0.6em;
 background-color: #CCCCCC;
 color: #3F3F3F;
 font: 80% Verdana, Geneva, Arial, Helvetica, sans-serif;
 width: 110px;
}
.clmonth td {
 border: 1px solid #EAEAEA;
 font: 80% Verdana, Geneva, Arial, Helvetica, sans-serif;
 padding: 0.2em 0.6em 0.2em 0.6em;
 vertical-align: top;
}

As you can see in Figure 5.17, our calendar is beginning to take shape.

The CSS Anthology170

Figure 5.17. Styling the caption, th, and td elements to make the calendar more user friendly

We can now style the lists of events within each table cell, removing the bullet and

adding space between list items:

cal.css (excerpt)

.clmonth ul {
 list-style-type: none;
 margin: 0;
 padding-left: 1em;
 padding-right: 0.6em;
}
.clmonth li {
 margin-bottom: 1em;
}

Finally, we add styles for the previous and next classes, which give the effect of

graying out those days that are not part of the current month. We also style the

active class, which highlights those days on which events will take place:

171 Tabular Data

cal.css (excerpt)

.clmonth td.previous, .clmonth td.next {
 background-color: #F6F6F6;
 color: #C6C6C6;
}
.clmonth td.active {
 background-color: #B1CBE1;
 color: #2B5070;
 border: 2px solid #4682B4;
}

This is just one of many ways to create a calendar. Online calendars are commonly

used on blogs, where they have clickable days that visitors can use to view entries

made that month. By removing the events from our HTML markup, representing

the day names with single letters—M for Monday, and so on—and making a few

simple changes to our CSS, we can create a simple mini-calendar that’s suitable for

this purpose, like the one shown in Figure 5.18.

Figure 5.18. Creating a mini-calendar

Here’s the HTML and CSS you’ll need for this version of the calendar:

cal_mini.html (excerpt)

<table class="clmonth" summary="Calendar for May 2007">
 <caption>May 2007</caption>
 <tr>

The CSS Anthology172

<th scope="col">M</th>

 <th scope="col">T</th>

 <th scope="col">W</th>

 <th scope="col">T</th>

 <th scope="col">F</th>

 <th scope="col">S</th>

 <th scope="col">S</th>

 </tr>

 <tr>

 <td class="previous">31</td>

 <td class="active">1</td>

 <td>2</td>

 <td>3</td>

 <td>4</td>

 <td>5</td>

 <td>6</td>

 </tr>

 <tr>

 <td class="active">7</td>

 <td>8</td>

 <td>9</td>

 <td>10</td>

 <td>11</td>

 <td>12</td>

 <td>13</td>

 </tr>

 <tr>

 <td>14</td>

 <td>15</td>

 <td>16</td>

 <td class="active">17</td>

 <td class="active">18</td>

 <td>19</td>

 <td>20</td>

 </tr>

 <tr>

 <td>21</td>

 <td>22</td>

 <td>23</td>

 <td class="active">24</td>

 <td>25</td>

 <td>26</td>

 <td>27</td>

 </tr>

173Tabular Data

<tr>

 <td>28</td>

 <td>29</td>

 <td class="active">30</td>

 <td>31</td>

 <td class="next">1</td>

 <td class="next">2</td>

 <td class="next">3</td>

 </tr>

</table>

cal_mini.css

body {
 background-color: #ffffff;
 color: #000000;
 font-size: 90%;
}
.clmonth {
 border-collapse: collapse;
}
.clmonth caption {
 text-align: left;
 font: bold 110% Georgia, "Times New Roman", Times, serif;
padding-bottom: 0.4em;

}
.clmonth th {
 border: 1px solid #AAAAAA;
 border-bottom: none;
 padding: 0.2em 0.4em 0.2em 0.4em;
 background-color: #CCCCCC;
 color: #3F3F3F;
 font: 80% Verdana, Geneva, Arial, Helvetica, sans-serif;
}
.clmonth td {
 border: 1px solid #EAEAEA;
 font: 80% Verdana, Geneva, Arial, Helvetica, sans-serif;
 padding: 0.2em 0.4em 0.2em 0.4em;
 vertical-align: top;
}
.clmonth td.previous, .clmonth td.next {
 background-color: #F6F6F6;
 color: #C6C6C6;
}

The CSS Anthology174

.clmonth td.active {

 background-color: #B1CBE1;

 color: #2B5070;

 border: 2px solid #4682B4;

}

Summary
In this chapter, we’ve discovered that tables are alive and well—when used for their

original purpose of displaying tabular data, that is! CSS gives you the ability to turn

data tables into really attractive interface items, without negatively impacting their

accessibility. So don’t be afraid to use tables to display tabular data—that’s their

job!

Chapter6
Forms and User Interfaces
Forms are an inescapable part of web design and development. We use them to

capture personal data from our users, to post information to message boards, to add

items to shopping carts, and to update our blogs—among many other things!

Despite the necessity of forms on the Web, HTML makes virtually no styling options

available to the designer, so forms have traditionally been rendered in the default

style of the browser. CSS has brought with it many ways to address form elements,

so this chapter will consider what can be styled in a form and why you might want

to do so. That said, this chapter will also cover some of the less-common HTML

form tags and attributes whose application can boost the accessibility and usability

of our forms, as well as providing additional elements to which we can apply CSS.

In the following pages, we’ll consider forms laid out using CSS positioning as well

as their table-based counterparts. Debate rages as to whether it is appropriate to lay

out a form using a table; my take is that, if a form is tabular in nature—for instance,

like the one in the spreadsheet example we’ll encounter in this chapter—a table is

the most logical way to structure the fields. Otherwise, your form is likely to be

more accessible if it’s laid out using CSS.

The CSS Anthology176

As we work with forms, it’s especially important to consider the usability of the

forms themselves. Forms are designed to accept user input, but they’ll fail in that

task if, though they look beautiful, site visitors aren’t sure how to use them.

How do I style form elements using CSS?
Unstyled form elements will display according to browser and operating system

defaults. However, you can use CSS to create forms that correspond to your site’s

visual design.

Solution
Styles can be created for form elements just as they can for any other HTML element.

The form shown in Figure 6.1 is unstyled; it’s displayed according to Firefox’s default

styles on Mac OS X, and it will look different on different browsers and operating

systems.

Figure 6.1. The basic appearance assumed by an unstyled form according to Firefox’s default styles

177Forms and User Interfaces

Here’s a typical form:

elements.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
 <title>CSS styled form elements</title>
 <meta http-equiv="content-type"
 content="text/html; charset=utf-8" />

 <link rel="stylesheet" type="text/css" href="elements.css" />
</head>
<body>
 <form method="post" action="example1.html" id="form1">
 <div><label for="name">What is your name?</label>

 <input type="text" name="name" id="name" /></div>
 <div><label for="color">Select your favorite color:</label>
 <select name="color" id="color">
 <option value="blue">blue</option>
 <option value="red">red</option>
 <option value="green">green</option>
 <option value="yellow">yellow</option>

 </select>
 </div>
 <div><label for="sex">Are you male or female?</label>

 <input type="radio" name="sex" id="male"

 value="male" />Male

 <input type="radio" name="sex" id="female"

value="female" />Female
 </div>
 <div>
 <label for="comments">Comments:</label>

 <textarea name="comments" id="comments" cols="30"

rows="4"></textarea>
 </div>
 <div>
 <input type="submit" name="btnSubmit" id="btnSubmit"

value="Submit" />
 </div>

 </form>
</body>
</html>

The CSS Anthology178

We can change the look of this form by creating CSS rules for the form, input,

textarea, and select elements:

elements.css

form {
 border: 1px dotted #aaaaaa;
 padding: 0.5em;
}
input {
 color: #00008B;
 background-color: #ADD8E6;
 border: 1px solid #00008B;
}
select {
 width: 100px;
 color: #00008B;
 background-color: #ADD8E6;
 border: 1px solid #00008B;
}
textarea {
 width: 200px;
 height: 40px;
 color: #00008B;
 background-color: #ADD8E6;
 border: 1px solid #00008B;
}

The new look is depicted in Figure 6.2.

Discussion
As you’d expect, the definition of rules for the HTML elements form, input, tex­

tarea, and select will affect any instances of these elements in a page to which

your style sheet is attached. You can use a variety of CSS properties to change the

appearance of a form’s fields. For example, CSS allows you to change almost every

aspect of an <input type="text"> field:

<input type="text" name="name" id="name" />

179Forms and User Interfaces

input {

 color: #00008B;

 background-color: #ADD8E6;

 border: 1px solid #00008B;

 font: 0.9em Arial, Helvetica, sans-serif;

 padding: 0.2em;

 width: 200px;

}

Figure 6.2. The form displaying differently following the application of CSS

Safari and Background Colors

Unfortunately, as of this writing, Safari does not support the application of back­

ground colors to all form fields (text fields and textarea elements work, but

other controls, such as buttons and drop-down menus, do not).

For this reason, as well as the fact that not all users can distinguish colors well,

you should never rely on field background colors for the usability of your site—for

instance, instructions like, “The yellow fields are required” would be a big no-no.

The CSS Anthology180

Let’s break down these styles:

color changes the color of the text that’s typed inside the field

background-color defines the field’s background

border affects the border around the field; any of the other border

styles here can be used

font changes the font size and typeface of the text within the field

padding moves the text typed within a field away from the edges of

the box

width allows the creation of form fields of the right width for the

data you expect users to enter (You don’t need a long field

for a user’s first initial, for example.)

How do I apply different styles to fields in
a single form?
The input element has many different types, and the styles that you need for a text

field are unlikely to be the same as those you want to use for your buttons or

checkboxes. How can you create specific styles for different form fields?

Solution
You can use CSS classes to specify the exact styles that individual fields will use.

The form in the following example has two input elements, one of which displays

a text field, while the other displays a Submit button. Different classes are applied

to each:

fields.html (excerpt)

<form method="post" action="fields.html">
<div>
 <label for="name">What is your name?</label>

 <input type="text" name="name" id="name" class="txt" />
</div>
<input type="submit" name="btnSubmit" id="btnSubmit"

181 Forms and User Interfaces

value="Submit" class="btn" />

</form>

fields.css

form {
 border: 1px dotted #aaaaaa;
 padding: 3px 6px 3px 6px;
}
input.txt {
 color: #00008B;
 background-color: #ADD8E6;
 border: 1px inset #00008B;
 width: 200px;
}
input.btn {
 color: #00008B;
 background-color: #ADD8E6;
 border: 1px outset #00008B;
 padding: 2px 4px 2px 4px;
}

Figure 6.3 shows the result.

Figure 6.3. Applying different classes to each of the input fields

Discussion
As we’ve seen, the input element can have several different types, and these types

may require different styles in order to display appropriately. In the example above,

The CSS Anthology182

we used classes to differentiate between an input element with a type of text and

an input element with a type of submit. Had we simply created one set of styles

for input, we might have ended up with the following (having set a width and used

an inset border on the text field):

input {

 color: #00008B;

 background-color: #ADD8E6;

 border: 1px inset #00008B;

 width: 200px;

}

Applied to the form above, these styles would have displayed as shown in Figure 6.4.

Figure 6.4. Applying the same styles to both input fields

The Submit button now looks rather like a text field; it certainly doesn’t look like a

button!

Using different classes allows us to style each element exactly as we want it to dis­

play. The forms in any application will likely need to cater for a variety of different

types of data. Some text fields may only require the user to enter two characters;

others may need to accept a name or other short word; others must take an entire

sentence. By creating CSS classes for small, medium, and large text fields, you can

choose the field that’s appropriate to the data you expect the user to enter. This, in

turn, helps users feel confident that they’re entering the correct information.

183Forms and User Interfaces

Style Early, Style Often

When I begin work on a site that includes a lot of forms, one of my first steps is

to create within the style sheet a number of classes for standard forms. It doesn’t

matter if the style needs to change at a later date—that just involves tweaking the

style sheet values. The important thing is that classes are applied from the outset,

so that any changes affect all the forms on the site.

How do I stop my form creating additional
white space and line breaks?
A form is a block-level element and, like a paragraph, will display on a new line

by default. This is usually the behavior you’d want to implement, but on some

occasions you may wish to add a small form within the flow of a document—for

instance, placing a small search box alongside other header elements.

Solution
You can use the display property with a value of inline to display a form as an

inline element:

inline.html (excerpt)

Your email address:
<form method="post" action="inline.html">
 <div><input type="text" name="name" id="name" class="txt" />
 <input type="submit" name="btnSubmit" id="btnSubmit"

 value="Submit" class="btn" /></div>
</form>

inline.css

form {
 display: inline;
}
input.txt {
 color: #00008B;
 background-color: #E3F2F7;
 border: 1px inset #00008B;
 width: 200px;

The CSS Anthology184

}

input.btn {

 color: #00008B;

 background-color: #ADD8E6;

 border: 1px outset #00008B;

}

As you can see in Figure 6.5, this CSS causes the form to join the document flow,

and sit inline with the text that surrounds it.

Figure 6.5. Displaying a form inline

How do I make a Submit button look
like text?
It’s generally a good idea to make buttons look like buttons if you expect people to

click on them. However, on occasion, you might want to have your form’s Submit

button look more like plain text.

Solution
Take a look at this style rule:

textbutton.css (excerpt)

.btn {
 background-color: transparent;
 border: 0;
 padding: 0;
}

185Forms and User Interfaces

The text Next » that appears on the second line in Figure 6.6 is actually a button!

Figure 6.6. Making a button look like text

Safari Protects its Buttons

Continuing its theme of limited form styling support, Safari doesn’t let you alter

the look of buttons the way other browsers do, and this solution does not apply

to that browser. As I mentioned above, you do need to take care when styling any

element to look like something else—the usability of your application could be

severely compromised if it is not immediately obvious that your button is clickable!

How do I ensure that users with text-only
devices understand how to complete
my form?
It’s good to create an attractive and usable form for visitors who have standard web

browsers, but bear in mind that many users will have a text-only view of your site.

Before you use CSS to style your form, ensure that it’s structured in a way that

makes the form’s completion easy for text-only users.

Solution
One of the most important ways to make your form more accessible is to ensure

that all users understand which label belongs with each form field. If they’re using

text-only devices or screen readers, which will read the form aloud to visually im­

paired users, visitors can find it very difficult to determine which details they’re

supposed to enter into each field unless your form is well planned and created.

The CSS Anthology186

The label element ties a label to a specific form field—it’s the ideal solution to this

particular problem. Like other elements on the page, the label element is easily

styled with CSS rules:

textonly.html (excerpt)

<form method="post" action="textonly.html">
 <table>
 <tr>
 <td><label for="fullname">Name:</label></td>
 <td><input type="text" name="fullname" id="fullname"

 class="txt" /></td>
 </tr>
 <tr>
 <td><label for="email">Email Address:</label></td>
 <td><input type="text" name="email" id="email" class="txt"

 /></td>
 </tr>
 <tr>
 <td><label for="password1">Password:</label></td>
 <td><input type="password" name="password1" id="password1"

 class="txt" /></td>
 </tr>
 <tr>
 <td><label for="password2">Confirm Password:</label></td>
 <td><input type="password" name="password2" id="password2"

 class="txt" /></td>
 </tr>
 <tr>
 <td><label for="level">Membership Level:</label></td>
 <td><select name="level">

 <option value="silver">silver</option>
 <option value="gold">gold</option>

 </select></td>
 </tr>

 </table>
 <p>
 <input type="submit" name="btnSubmit" id="btnSubmit"

 value="Sign Up!" class="btn" />
 </p>
</form>

187Forms and User Interfaces

textonly.css

h1 {
 font: 1.2em Arial, Helvetica, sans-serif;
}
input.txt {
 color: #00008B;
 background-color: #E3F2F7;
 border: 1px inset #00008B;
 width: 200px;
}
input.btn {
 color: #00008B;
 background-color: #ADD8E6;
 border: 1px outset #00008B;
}
label {
 font : bold 0.9em Arial, Helvetica, sans-serif;
}

The results of these styles can be seen in Figure 6.7—though the benefits of these

styles for visually impaired users are obviously not going to be apparent in a printed

book! That said, as well as improving the form’s usability for text-only browsers

and screen readers, these styles will cause visual browsers to place the cursor in

the corresponding field when the user clicks on one of the labels. When you add a

label, everybody wins!

The CSS Anthology188

Figure 6.7. Displaying the form in the browser

Discussion
The label element makes it possible to indicate clearly what information users

need to enter into a field. As we’ve discussed, forms that may be read out to users

by their screen readers need to make the purpose of each field immediately obvious.

With a layout such as the one provided in this example, which uses a table to display

the label in one cell and the field in another, it’s especially important that we include

a label element. (In the solution that follows, I’ll demonstrate how to achieve the

same form layout without using a table.)

You can use the label element in two ways. If your form field is right next to the

label text, you can simply wrap both the label text and the field with the element’s

start and end tags:

<label>Name: <input type="text" name="fullname" id="fullname"

 class="txt" /></label>

If, as in our example above, you cannot wrap the label and field, as they’re not sib­

lings in the document structure, you can use the <label> tag’s for attribute instead.

In this case, you must insert as a value the ID of the field that the label describes:

189Forms and User Interfaces

textonly.html (excerpt)

 <tr>
 <td><label for="fullname">Name:</label></td>
 <td><input type="text" name="fullname" id="fullname"

 class="txt" /></td>
 </tr>

Once you have your label element in place, you’ll have made an important step

towards ensuring that those using screen readers will understand how to complete

your form. Keep in mind that you can also use CSS to style the label element itself:

textonly.css (excerpt)

label {
 font: bold 0.9em Arial, Helvetica, sans-serif;
}

How do I lay out a two-column form using
CSS instead of a table?
Forms can be tricky to lay out without tables, but the task isn’t impossible. Figure 6.8

shows a form layout that looks remarkably table-like, but if you examine the HTML

code that follows, you’ll find there’s not a table in sight!

The CSS Anthology190

Figure 6.8. A two-column form laid out using CSS

tablefree.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Table-free form layout</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="tablefree.css" />
</head>
<body>
<h1>User Registration Form</h1>
<form method="post" action="tablefree.html">
 <div>
 <label for="fullname">Name:</label>
 <input type="text" name="fullname" id="fullname"

class="txt" />
 </div>
 <div>
 <label for="email">Email Address:</label>
 <input type="text" name="email" id="email" class="txt" />

 </div>
 <div>
 <label for="password1">Password:</label>

191 Forms and User Interfaces

<input type="password" name="password1" id="password1"

class="txt" />

 </div>

 <div>

 <label for="password2">Confirm Password:</label>

 <input type="password" name="password2" id="password2"

 class="txt" />

 </div>

 <div>

 <label for="level">Membership Level:</label>

 <select name="level">

 <option value="silver">silver</option>

 <option value="gold">gold</option>

 </select>

 </div>

 <div>

 <input type="submit" name="btnSubmit" id="btnSubmit"

value="Sign Up!" class="btn" />

 </div>

</form>

</body>

</html>

tablefree.css

h1 {
 font: 1.2em Arial, Helvetica, sans-serif;
}
input.txt {
 color: #00008B;
 background-color: #E3F2F7;
 border: 1px inset #00008B;
 width: 200px;
}
input.btn {
 color: #00008B;
 background-color: #ADD8E6;
 border: 1px outset #00008B;
}
form div {
 clear: left;
 margin: 0;
 padding: 0;
 padding-top: 0.6em;

The CSS Anthology192

}

form div label {

 float: left;

 width: 40%;

 font: bold 0.9em Arial, Helvetica, sans-serif;

}

Discussion
The example above creates a common form layout. As we saw earlier in this chapter,

this layout’s often achieved using a two-column table in which the label is placed

in one cell, the field in another:

textonly.html (excerpt)

<form method="post" action="textonly.html">
 <table>
 <tr>
 <td><label for="fullname">Name:</label></td>
 <td><input type="text" name="fullname" id="fullname"

 class="txt" /></td>
 </tr>
 <tr>
 <td><label for="email">Email Address:</label></td>
 <td><input type="text" name="email" id="email" class="txt"

 /></td>
 </tr>
 <tr>
 <td><label for="password1">Password:</label></td>
 <td><input type="password" name="password1" id="password1"

 class="txt" /></td>
 </tr>
 <tr>
 <td><label for="password2">Confirm Password:</label></td>
 <td><input type="password" name="password2" id="password2"

 class="txt" /></td>
 </tr>
 <tr>
 <td><label for="level">Membership Level:</label></td>
 <td><select name="level">

 <option value="silver">silver</option>
 <option value="gold">gold</option>

 </select></td>

193Forms and User Interfaces

</tr>

 </table>

 <p>

 <input type="submit" name="btnSubmit" id="btnSubmit"

 value="Sign Up!" class="btn" />

 </p>

</form>

This form has been laid out using a table to ensure that all the fields line up neatly.

Without the table, the fields appear immediately after the labels, as Figure 6.9 shows.

Figure 6.9. A form laid out without a table

In the markup that’s used to create the form shown in Figure 6.9, each form row is

located within a div element, causing the field to appear immediately after the label:

tablefree.html (excerpt)

<form method="post" action="tablefree.html">
 <div>
 <label for="fullname">Name:</label>
 <input type="text" name="fullname" id="fullname" class="txt"

 />
 </div>
 <div>

The CSS Anthology194

<label for="email">Email Address:</label>

 <input type="text" name="email" id="email" class="txt" />

 </div>

⋮

To recreate the effect of the table-based layout using only CSS, we don’t have to

make any changes to our markup. All we need is some simple CSS:

tablefree.css

form div {
 clear: left;
 margin: 0;
 padding: 0;
 padding-top: 0.6em;
}
form div label {
 float: left;
 width: 40%;
 font: bold 0.9em Arial, Helvetica, sans-serif;
}

What we’re doing here is addressing our label element directly in the style sheet.

We float it to the left, give it a width value and modify its font settings.

As the float property takes an element out of the document flow, we need to give

our divs a clear property with the value left, to ensure that each div starts below

the label in the preceding div. We also give our divs a padding-top value, in order

to space out the rows, and that’s it!

How do I group related fields?
Large web forms can be made much more usable if the visitor can ascertain which

questions are related. We need a way to show the relationships between informa­

tion—a way that helps users with standard browsers as well as those using text-only

devices and screen readers.

Solution
We can group related fields using the fieldset and legend elements:

fieldset.html (excerpt)

<form method="post" action="fieldset.html">
<fieldset>
 <legend>Personal Information</legend>
 <div>
 <label for="fullname">Name:</label>
 <input type="text" name="fullname" id="fullname"

class="txt" />
 </div>
 <div>
 <label for="email">Email Address:</label>
 <input type="text" name="email" id="email" class="txt" />

 </div>
 <div>
 <label for="password1">Password:</label>
 <input type="password" name="password1" id="password1"

class="txt" />
 </div>
 <div>
 <label for="password2">Confirm Password:</label>
 <input type="password" name="password2" id="password2"

class="txt" />
 </div>
</fieldset>

 <fieldset>
 <legend>Address Details</legend>
 <div>
 <label for="address1">Address line one:</label>
 <input type="text" name="address1" id="address1"

class="txt" />
 </div>
 <div>
 <label for="address2">Address line two:</label>
 <input type="text" name="address2" id="address2"

class="txt" />
 </div>
 <div>
 <label for="city">Town / City:</label>
 <input type="text" name="city" id="city" class="txt" />

 </div>
 <div>
 <label for="zip">Zip / Post code:</label>
 <input type="text" name="zip" id="zip" class="txt" />

195Forms and User Interfaces

The CSS Anthology196

</div>

</fieldset>

 <div>

 <input type="submit" name="btnSubmit" id="btnSubmit"

value="Sign Up!" class="btn" />

 </div>

</form>

fieldset.css

h1 {
 font: 1.2em Arial, Helvetica, sans-serif;
}
input.txt {
 color: #00008B;
 background-color: #E3F2F7;
 border: 1px inset #00008B;
 width: 200px;
}
input.btn {
 color: #00008B;
 background-color: #ADD8E6;
 border: 1px outset #00008B;
}
form div {
 clear: left;
 margin: 0;
 padding: 0;
 padding-top: 5px;
}
form div label {
 float: left;
 width: 40%;
 font: bold 0.9em Arial, Helvetica, sans-serif;
}
fieldset {
 border: 1px dotted #61B5CF;
 margin-top: 1.4em;
 padding: 0.6em;
}
legend {
 font: bold 0.8em Arial, Helvetica, sans-serif;
 color: #00008B;

197Forms and User Interfaces

background-color: #FFFFFF;

}

Figure 6.10 shows how the groupings are displayed by the browser.

Figure 6.10. Creating two sections in a form using the <fieldset> tag

Discussion
The <fieldset> and <legend> tags are a great way to group related information in

a form. These tags provide an easy means to group items visually, and are understood

by screen readers and text-only devices, which can perceive that the tagged items

are logically grouped together. This wouldn’t be the case if you simply wrapped

the related items in a styled div users of a standard browser would understand the

relationship, but those who couldn’t see the results of our CSS would not.

The CSS Anthology198

To group form fields, simply wrap the related fields with a <fieldset> tag and,

immediately after your opening <fieldset> tag, add a <legend> tag that contains

a title for the group:

fieldset.html (excerpt)

 <fieldset>
 <legend>Personal Information</legend>
 <div>
 <label for="fullname">Name:</label>
 <input type="text" name="fullname" id="fullname" class="txt"

 />
 </div>
 <div>
 <label for="email">Email Address:</label>
 <input type="text" name="email" id="email" class="txt" />

 </div>
 <div>
 <label for="password1">Password:</label>
 <input type="password" name="password1" id="password1"

 class="txt" />
 </div>
 <div>
 <label for="password2">Confirm Password:</label>
 <input type="password" name="password2" id="password2"

 class="txt" />
 </div>

 </fieldset>

Like other HTML tags, <fieldset> and <legend> are displayed with a default style

by browsers. The default style surrounds the grouped elements with a box, and the

<legend> tag appears in the top-left corner of that box. Figure 6.11 shows the

<fieldset> and <legend> tags as they display by default in Firefox on Mac OS X.

199Forms and User Interfaces

Figure 6.11. Viewing unstyled <fieldset> and <legend> tags

How do I style accesskey hints?
Access keys allow users to jump quickly to a certain place in a document or follow

a link—all they need to do is press a combination of Alt (or equivalent) and another,

specific key. You have to let users know what that other key is, of course!

Solution
The convention that’s followed by many computer operating systems is to indicate

which letter of a key word is its access key by underlining that letter. For example,

on a Windows machine, Alt-F opens the File drop-down menu. This functionality

is indicated by the underlining of the letter “F” in File, as shown in Figure 6.12.

The CSS Anthology200

Figure 6.12. The underline beneath the letter “F” in the word File

You can use a similar technique on your site, underlining the appropriate letters to

identify your access keys.

accesskeys.html (excerpt)

 <fieldset>
 <legend>Personal
 Information</legend>

 <div>
 <label for="fullname">Name:</label>
 <input type="text" name="fullname" id="fullname" class="txt"

accesskey="p" />
 </div>

accesskeys.css (excerpt)

.akey {
 text-decoration: underline;
}

As you can see in Figure 6.13, the access key for each field set is underlined.

201 Forms and User Interfaces

Figure 6.13. Indicating access keys with lines under the “P” in Personal and “A” in Address

Discussion
Access keys can be very helpful to site users who have mobility problems and can’t

use a mouse, as well as to users who simply prefer using the keyboard to navigate,

rather than the mouse. You could, for example, provide an access key that allowed

these visitors to jump straight to the form by pressing one key, or to go to the search

box by pressing another. The convention of underlining the letter that corresponds

to the access key will be familiar to visitors who use this functionality, even if other

users don’t know what it means.

To add access key functionality to a form field, you simply need to add the attribute

accesskey="x" to that field, where x is the character you’ve chosen for the access

key:

The CSS Anthology202

accesskeys.html (excerpt)

 <div>
 <label for="fullname">Name:</label>
 <input type="text" name="fullname" id="fullname" class="txt"

accesskey="p" />
 </div>

In our example, I’ve added an access key to the first form element of each group.

When a user presses the access key, focus will move to that first form field so that

users can begin to complete the form. To highlight the access key, I’ve taken the

first letter of the field set <legend> (for example, the “P” in “Personal Details”) and

wrapped it in a span with a class of akey:

accesskeys.html (excerpt)

<legend>Personal Information</legend>

I’ve styled the akey class, setting the text-decoration property to underline:

accesskeys.css (excerpt)

.akey {
 text-decoration: underline;
}

Not all browsers implement access keys in the same way. For example, Internet

Explorer and Firefox 1.5 use the Alt key, but Firefox 2 uses Alt-Shift (at the time of

writing, however, this only works for alphabetical access keys, not numeric ones).

Safari uses Ctrl, and Opera uses Shift-Esc but allows users to configure their own

key combinations.

Access Keys May be Less Accessible than they Appear

When creating access keys, take care not to override default browser keyboard

shortcuts!

203Forms and User Interfaces

How do I use different colored highlights
in a select menu?
Earlier, we learned how to color the background of a select menu in a form. But

is it possible to include several colors in the menu to highlight different options?

Solution
You can assign classes to menu options to apply multiple background colors within

the drop-down menu. color and background-color are the only properties you

can set for a menu item.

Safari has no Stripes

Remember, Safari doesn’t yet support background colors on form elements, so

this solution will not work in that browser.

Here’s the code you’ll need:

select.html (excerpt)

<form method="post" action="example8.html">
 <div>
 <label for="color">Select your favorite color:</label>
 <select name="color" id="color">
 <option value="">Select One</option>
 <option value="blue" class="blue">blue</option>
 <option value="red" class="red">red</option>
 <option value="green" class="green">green</option>
 <option value="yellow" class="yellow">yellow</option>

 </select>
 </div>
 <div>
 <input type="submit" name="btnSubmit" id="btnSubmit"

 value="Send!" class="btn" />
 </div>
</form>

The CSS Anthology204

select.css (excerpt)

.blue {
 background-color: #ADD8E6;
 color: #000000;
}
.red {
 background-color: #E20A0A;
 color: #ffffff;
}
.green {
 background-color: #3CB371;
 color: #ffffff;
}
.yellow {
 background-color: #FFF280;
 color: #000000;
}

Thanks to this code, the drop-down menu in Figure 6.14 looks very colorful indeed.

Note, however, that we wouldn’t normally want to use such presentational class

names in our CSS. For example, giving a heading a class name of blue would be a

poor decision, as you might decide later to change the color of all headings to

green—you’d then either be left with a bunch of headings that had a class of blue

but in fact displayed as green, or you’d have to change all of your markup. However,

in the case of a color selection form, like in this example, common sense prevails!

Figure 6.14. Options displaying within a selectmenu to which classes are applied

205Forms and User Interfaces

Style with Substance

Use different background colors on sets of related options, or apply alternating

row colors in your select menu.

I have a form that allows users to enter
data as if into a spreadsheet. How do I
style it with CSS?
While laying out forms using CSS is possible—and recommended in most

cases—there are some cases in which data is more easily entered into a form within

a table. One obvious example is a spreadsheet-like web application.

Users may already be accustomed to entering data into a spreadsheet using Microsoft

Excel or another package. Keep this in mind as you design your application inter­

face—mimicking familiar interfaces often helps users to feel comfortable with your

application. Making your form look like a spreadsheet by laying it out in a table,

and using CSS to format it, may be the way to go. Let’s take a look at the code:

spreadsheet.html (excerpt)

<form method="post" action="spreadsheet.html">
<table class="formdata" summary="This table contains a form to

 input the yearly income for years 1999 through 2002">
 <caption>Complete the Yearly Income 1999 - 2002</caption>
 <tr>
 <th></th>
 <th scope="col">1999</th>
 <th scope="col">2000</th>
 <th scope="col">2001</th>
 <th scope="col">2002</th>

 </tr>
 <tr>
 <th scope="row">Grants</th>
 <td><input type="text" name="grants1999" id="grants1999" />
 </td>
 <td><input type="text" name="grants2000" id="grants2000" />
 </td>
 <td><input type="text" name="grants2001" id="grants2001" />

The CSS Anthology206

</td>

 <td><input type="text" name="grants2002" id="grants2002" />

 </td>

 </tr>

 <tr>

 <th scope="row">Donations</th>

 <td><input type="text" name="donations1999" id="donations1999"

 /></td>

 <td><input type="text" name="donations2000" id="donations2000"

 /></td>

 <td><input type="text" name="donations2001" id="donations2001"

 /></td>

 <td><input type="text" name="donations2002" id="donations2002"

 /></td>

 </tr>

 <tr>

 <th scope="row">Investments</th>

 <td><input type="text" name="investments1999"

 id="investments1999" /></td>

 <td><input type="text" name="investments2000"

 id="investments2000" /></td>

 <td><input type="text" name="investments2001"

 id="investments2001" /></td>

 <td><input type="text" name="investments2002"

 id="investments2002" /></td>

 </tr>

 <tr>

 <th scope="row">Fundraising</th>

 <td><input type="text" name="fundraising1999"

 id="fundraising1999" /></td>

 <td><input type="text" name="fundraising2000"

 id="fundraising2000" /></td>

 <td><input type="text" name="fundraising2001"

 id="fundraising2001" /></td>

 <td><input type="text" name="fundraising2002"

 id="fundraising2002" /></td>

 </tr>

 <tr>

 <th scope="row">Sales</th>

 <td><input type="text" name="sales1999" id="sales1999" /></td>

 <td><input type="text" name="sales2000" id="sales2000" /></td>

 <td><input type="text" name="sales2001" id="sales2001" /></td>

 <td><input type="text" name="sales2002" id="sales2002" /></td>

 </tr>

207 Forms and User Interfaces

<tr>

 <th scope="row">Miscellaneous</th>

 <td><input type="text" name="misc1999" id="misc1999" /></td>

 <td><input type="text" name="misc2000" id="misc2000" /></td>

 <td><input type="text" name="misc2001" id="misc2001" /></td>

 <td><input type="text" name="misc2002" id="misc2002" /></td>

 </tr>

 <tr>

 <th scope="row">Total</th>

 <td><input type="text" name="total1999" id="total1999" /></td>

 <td><input type="text" name="total2000" id="total2000" /></td>

 <td><input type="text" name="total2001" id="total2001" /></td>

 <td><input type="text" name="total2002" id="total2002" /></td>

 </tr>

</table>

<div><input type="submit" name="btnSubmit" id="btnSubmit"

 value="Add Data" /></div>

</form>

spreadsheet.css

table.formdata {
 border: 1px solid #5F6F7E;
 border-collapse: collapse;
 margin: 1em 0 2em 0;
}
table.formdata th {
 border: 1px solid #5F6F7E;
 background-color: #E2E2E2;
 color: #000000;
 text-align: left;
 font-weight: normal;
 padding: 0.2em 0.4em 0.2em 0.4em;
 margin: 0;
}
table.formdata td {
 margin: 0;
 padding: 0;
 border: 1px solid #E2E2E2;
}
table.formdata input {
 width: 80px;
 padding: 0.2em 0.4em 0.2em 0.4em;
 margin: 0;

The CSS Anthology208

border: none;

}

The styled form, which looks very spreadsheet-like, is shown in Figure 6.15.

Figure 6.15. A form styled to resemble a spreadsheet

Discussion
The aim here is to create a form that looks similar to a spreadsheet, such as the Excel

spreadsheet shown in Figure 6.16. Recently, I created forms similar to this for a web

application that had many tables of data. The client wanted the table to turn into

an editable table when it was selected for editing—while it retained the appearance

of the original data table, the contents could be edited by the user.

209Forms and User Interfaces

Figure 6.16. A spreadsheet displaying in Excel

The first step to achieve this effect is to lay out the form within a structured table,

using table headings (th elements) where appropriate, and adding a caption and

summary for accessibility purposes. The complete code for this form is provided

in the solution above. Before we add any CSS, the form should display as shown

in Figure 6.17.

Figure 6.17. The unstyled form, ready for CSS formatting

The CSS Anthology210

To create the style rules for this form, we must establish for the table a class that

contains all the spreadsheet fields. I’ve given the table a class name of formdata:

spreadsheet.html (excerpt)

<table class="formdata" summary="This table contains a form to
 input the yearly income for years 1999 through 2002">

In the style sheet, class formdata has a single-pixel border in a dark, slate gray, and

the border-collapse property is set to collapse:

spreadsheet.css (excerpt)

table.formdata {
 border: 1px solid #5F6F7E;
 border-collapse: collapse;
}

Next, we can style the table headings. I’ve used the <th> tag for the top and left-

hand column headings, so to style these, all I need to do is address the <th> tags

within a table of class formdata:

spreadsheet.css (excerpt)

table.formdata th {
 border: 1px solid #5F6F7E;
 background-color: #E2E2E2;
 color: #000000;
 text-align: left;
 font-weight: normal;
 padding: 0.2em 0.4em 0.2em 0.4em;
 margin: 0;
}

211 Forms and User Interfaces

Figure 6.18. The form display after the table and th elements are styled

To produce an editable table, we need to hide the borders of the form fields and

add borders to the table cells. As the only input elements within the table are the

text fields that we want to style, we can simply address all input elements in the

table with a class of formdata; this saves us having to add classes to all our fields.

We add a border to the td element, and set the borders on the input element to 0.

We specify a width for the input element, as we know that the type of data that

will be added won’t need a large field. We then add some padding so that text that’s

typed into the form field doesn’t bump up against the border:

spreadsheet.css (excerpt)

table.formdata td {
 margin: 0;
 padding: 0;
 border: 1px solid #E2E2E2;
}
table.formdata input {
 width: 80px;
 padding: 0.2em 0.4em 0.2em 0.4em;
 margin: 0;
 border-width: 0;
 border-style: none;
}

The CSS Anthology212

That’s all there is to it! If you use this technique, make sure that your users under­

stand that the table is editable. Removing borders from form fields isn’t going to

help users if it means they can’t work out how to complete the form—or don’t even

realize that the form exists!

Some Browsers Still Display Input Element Borders

Certain browsers—most notably Safari on Mac OS X—will display the input

element borders, so while the effect won’t be quite as neat, it will still be com­

pletely usable.

How do I highlight the form field that the
user clicks into?
Applications such as Excel highlight the focused form field when the user clicks

on it or tabs to it. Is it possible to create this effect in our web form?

Solution
We can create this effect using pure CSS, thanks to the :focus pseudo-class. While

this solution works in Internet Explorer 7, unfortunately it doesn’t work in the more

commonly used Internet Explorer 6:

spreadsheet2.css (excerpt)

table.formdata input {
 width: 80px;
 padding: 0.2em 0.4em 0.2em 0.4em;
 margin: 0;
 border: 2px solid #ffffff;
}
.formdata input:focus {
 border: 2px solid #000000;
}

Figure 6.19 shows how this code displays.

213 Forms and User Interfaces

Figure 6.19. Highlighting the form field in focus in Firefox

Discussion
This solution for adding a border (or changing the background color) of the form

field when it receives focus is a simple one. In fact, it’s as simple as adding the

pseudo-class selector :focus to your style sheet to display a different style for the

input element when the user clicks into it.

Unfortunately, as I’ve already mentioned, Internet Explorer 6 does not support the

:focus pseudo-class, so this effect will not display for a large number of your appli­

cation’s users.

There is a way around this problem that, unfortunately, requires a little JavaScript.

Add the following JavaScript after the table in your document:

spreadsheet2.html (excerpt)

<script type="text/javascript">
var editcells =
document.getElementById('form1').getElementsByTagName('input');

for (var i = 0; i < editcells.length; i++) {

The CSS Anthology214

editcells[i].onfocus = function() {

 this.className += ' hilite';

 }

 editcells[i].onblur = function() {

 this.className = this.className.replace('hilite', '');

 }

}

</script>

Once you’ve added this code, you’ll need to add the class hilite to your CSS file,

using the same rules we used for the :focus pseudo-class:

spreadsheet2.css (excerpt)

.formdata input:focus, .formdata input.hilite {
 border: 2px solid #000000;
}

Your field highlighting will now work in Internet Explorer 6 as well as those

browsers that support the :focus pseudo-class.

Summary
In this chapter, we’ve looked at a variety of ways to style forms using CSS, from

simply changing the look of form elements, to using CSS to lay forms out. We’ve

seen how CSS can greatly enhance the appearance and usability of forms. We’ve

also touched on the accessibility of forms for users of alternative devices, and we’ve

seen how, by being careful when marking forms up, you can make it easier for all

visitors to use your site or web application.

Chapter7
Cross-browser Techniques
This chapter contains solutions for making your sites work well in many browsers.

It’s unlikely that every visitor to your site is using the most up-to-date version of

Internet Explorer, Firefox, or Safari, so you’ll want to take the time to ensure that

users with older or less common browsers enjoy their experience of your site.

As we’ve seen, you can use CSS to separate the structure and content of your docu­

ments from the presentation of your site. If you take this approach, visitors who use

devices that can’t render your design—either because they’re limited from a tech­

nical standpoint, such as some PDA or phone browsers, or as a result of their own

functional advantages, such as screen readers that speak your pages’ text for the

benefit of visually impaired users—will still be able to access the content. CSS gives

you the freedom to meet the needs of these users and to create beautiful designs for

the majority of users, whose browsers do support CSS.

As well as discussing the nuances of different browsers and devices, this chapter

will provide you with techniques to troubleshoot CSS bugs in browsers that support

CSS. Keep in mind that this chapter couldn’t possibly cover every known CSS

bug—even if it tried, it would likely be out of date before it was printed, as new

The CSS Anthology216

bugs, and new bug fixes, appear all the time. What I’ve tried to do here is explain

some of the main culprits that cause browser-related problems with CSS. I’ve ex­

plained how those problems might be solved, where you can go to get up-to-date

bug-squashing advice, and how to step through a problem, isolate its cause, and ask

for help in a way that’s likely to get you a useful answer.

In which browsers should I test my site?
Once upon a time, web designers only worried whether or not their sites looked

good in Internet Explorer and Netscape Navigator; those days are now long gone.

While Internet Explorer currently has the largest share of the browser market, sev­

eral other important desktop—and other—browsers are in use, including screen

readers, and browsers on PDAs and web phones.

Solution
The answer to this question is to test your sites in as many browsers as you can.

The types of browsers that you’re able to install will depend on the operating systems

to which you have access. Table 7.1 lists the major browsers that can be installed

on Windows, Mac OS X, and Linux. At the very least, you’re likely to want to test

in Internet Explorer 6 and 7, a Mozilla-based browser, Opera, and if your operating

system allows it, a KHTML-based browser such as Konqueror or Safari.

Tracking Down Obscure and Obsolete Browsers

Older and more unusual browsers can be downloaded from

http://browsers.evolt.org/.

I only have access to one operating system.
How can I test in more of these browsers?
Unless you have an entire test suite in your office, you’ll probably find that you’re

unable to install certain browsers because they’re operating-system specific. For a

list of the most popular browsers, see Table 7.1.

http://browsers.evolt.org/

217 Cross-browser Techniques

Table 7.1. Popular browsers

Download From LinuxMacWinBrowser (Engine)

http://browsers.evolt.org/?ie/32bit/standalone Internet Explorer 6 and

older

http://www.microsoft.com/ie/ Internet Explorer 7

http://www.mozilla.com/ Firefox (Gecko)

http://www.caminobrowser.org/ Camino (Gecko)

http://www.opera.com/ Opera

http://www.apple.com/safari/ Safari (WebCore)

Solution
There are a variety of solutions that will let you run an additional operating system

on your computer, thereby giving you the ability to install and use the browsers

developed for that operating system.

Windows Users
Windows users are in a good position to test on a wide variety of browsers. Internet

Explorer, in its various incarnations, accounts for roughly 70–80% of the general

browsing public, and most of the other major browsers offer Windows versions.

Unfortunately, when it comes to testing on Mac-only browsers such as Safari, the

options available in Windows are limited.

Testing on Mac Browsers

Mac OS X is the most difficult platform to emulate at present. Having a Mac around

is therefore almost essential for any serious web designer—though your Mac doesn’t

need to be particularly fast or have an enormous amount of memory if all you use

it for is testing sites in Safari.

It’s possible to emulate the Mac OS X operating system on a Windows XP machine

to some extent, using an open source emulator called PearPC.1 However, at the time

1 http://pearpc.sourceforge.net/

http://pearpc.sourceforge.net/
http://pearpc.sourceforge.net/

The CSS Anthology218

of writing, the emulator was slow, buggy, and incomplete. Future releases of PearPC

may deliver a viable option for running Safari under Windows, but at the time of

writing it was more useful for geeks who enjoy tinkering with emulators than for

web designers seeking a robust testing platform.

In mid-2007, Apple surprised the web community by releasing a version of its Safari

browser for Windows. Unfortunately, Safari for Windows could never be relied

upon to render a page that’s identical to its older (and more popular) Mac-based

cousin. It can, however, be useful as an indication of where possible rendering

problems may lie.

Testing on Linux Browsers

While there’s currently no way to emulate a Mac on a Windows computer, various

options are available to those who would like to be able to view sites in Linux­

specific browsers.

Linux Live CDs

Live CDs are versions of Linux that run completely from a CD, and can be run as a

testing environment on your computer without you needing to actually install Linux

onto your hard disk. One of the most well known of the Live CDs is Knoppix, which

can be downloaded from The Knoppix web site.2 Knoppix comes with the KDE

desktop environment, which includes Konqueror. A comprehensive list of other

Live CDs—such as the Ubuntu Live CD, which has the Gnome desktop as stand­

ard—is available at FrozenTech.3

Dual Booting with Linux

Another option, if you want to run another operating system, is to dual boot your

computer. You can install Windows and Linux, then select the platform you want

to boot into when you start up your machine. A good walkthrough of the process

you’ll need to use to get your dual-boot system up and running can be found at the

About Debian Linux site.4

2 http://www.knoppix.net/
3 http://www.frozentech.com/content/livecd.php
4 http://www.aboutdebian.com/dualboot.htm

http://www.knoppix.net/
http://www.frozentech.com/content/livecd.php
http://www.aboutdebian.com/dualboot.htm
http://www.knoppix.net/
http://www.frozentech.com/content/livecd.php
http://www.aboutdebian.com/dualboot.htm

219 Cross-browser Techniques

Mac Users
Mac users who have newer Intel Macs can feel smug—your environment can easily

be used to test sites in all three operating systems. Even if you have a PowerPC Mac,

you can still test both Windows and Mac browsers, albeit more slowly than is pos­

sible with an Intel Mac.

Testing on Windows Browsers

Mac users who want to test sites on Windows browsers have three options.

Parallels

Since Apple launched its new Intel-based machines, customers have been able to

run virtual machines as VMWare does: via the third party application Parallels,

pictured in Figure 7.1.5 You can run both Windows and Linux in Parallels. You can

even run multiple versions of Windows, so you can test Internet Explorer 6 and 7

on the same computer!

Boot Camp

Another option for Mac users wishing to install Windows is the Boot Camp software,

which enables you to dual boot your Intel Mac with Windows.6 Unlike Parallels or

other virtual machine software, Boot Camp will require you to reboot into Win­

dows—it won’t allow you to run Windows inside a window on your desktop—but

it does offer another way in which to test your work.

If you are a designer who wants to be able to work on only one machine, the Intel

Macs are well worth investigating, and I say that as a Linux desktop user!

5 http://www.parallels.com/
6 http://www.apple.com/macosx/bootcamp/

http://www.parallels.com/
http://www.parallels.com/
http://www.apple.com/macosx/bootcamp/
http://www.parallels.com/
http://www.apple.com/macosx/bootcamp/

The CSS Anthology220

Figure 7.1. Internet Explorer 7 and Safari on an Intel Mac using Parallels

Virtual PC for Mac

Microsoft Virtual PC for Mac enables Mac users who aren’t lucky enough to be using

an Intel Mac to install and run Windows applications. Find out more at Microsoft’s

Mactopia.7

Linux Users
Linux users are in much the same boat as Windows users when it comes to testing

on Mac-only browsers. On the bright side, Wine and VMWare offer convenient ways

for Linux users to run various versions of Internet Explorer without needing to reboot

their machines.

Testing on Mac Browsers

The only option for running Safari on a Linux machine is to use an open source

emulator called PearPC.8 However, at the time of writing, the emulator was slow,

buggy, and incomplete, and could not be relied upon as a robust testing platform.

7 http://www.microsoft.com/mac/products/virtualpc/virtualpc.aspx
8 http://pearpc.sourceforge.net/

http://www.microsoft.com/mac/products/virtualpc/virtualpc.aspx
http://pearpc.sourceforge.net/
http://pearpc.sourceforge.net/
http://www.microsoft.com/mac/products/virtualpc/virtualpc.aspx
http://pearpc.sourceforge.net/

221 Cross-browser Techniques

However, since Safari is based on the KHTML rendering engine, which is also used

by (and was originally developed by) the KDE browser Konqueror, Konqueror tends

to render things in a similar way to Safari. This is certainly no substitute for having

a Mac on hand to use for testing, but it can provide a rough indication of how your

pages will render in Safari.

Testing on Windows Browsers

As with Windows, the easiest option for Linux users who want to test sites on

Windows browsers is usually to dual boot their machines, but a number of tools

that facilitate side-by-side testing with Windows browsers on Linux are available.

VMWare

A version of VMWare is available for Linux; it allows users to run a Linux host

system and create VMWare virtual machines on which they can install other oper­

ating systems, such as Windows.

Wine

Wine is an open source implementation of the Windows API, which runs on top of

Linux. Installing Wine will enable you to run some Windows programs in

Linux—with varying success! You can find out more about Wine at Wine HQ.9 The

Internet Explorer packages created especially to run under Wine make the install

process far simpler. They’re available from IEs 4 Linux.10

Far easier to install and configure than Wine itself is Crossover Office.11 This com­

mercial product, which incorporates Wine, allows customers to install Windows

applications on Linux; Internet Explorer 6 is currently supported.

Dual Booting

Linux users also have the option of dual booting their system as a way to install a

version of Windows—as much as it may pain them to do so!

9 http://www.winehq.com/
10 http://www.tatanka.com.br/ies4linux/
11 http://www.codeweavers.com/

http://www.winehq.com/
http://www.tatanka.com.br/ies4linux/
http://www.codeweavers.com/
http://www.winehq.com/
http://www.tatanka.com.br/ies4linux/
http://www.codeweavers.com/

The CSS Anthology222

Is there a service that can show me how my
site looks in various browsers?
Being able to test your site in a variety of browsers is the best way to check that it

works well in all of them; however, unless you can set up a test suite in your office,

it’s likely that there’ll be some browsers to which you won’t have access.

Solution
You can check how your site displays and functions in multiple browsers on multiple

operating systems at BrowserCam.12

Figure 7.2. Using BrowserCam to test a site

12 http://www.browsercam.com/

http://www.browsercam.com/
http://www.browsercam.com/

223Cross-browser Techniques

You’ll have to pay for this service, but if you only have access to one operating

system, BrowserCam can be a great way to get a feel for your site’s behavior in

browsers that you couldn’t otherwise access. A sample of the results BrowserCam

displays can be seen in Figure 7.2.

Discussion
In addition to the screenshot service depicted in Figure 7.2, BrowserCam offers a

service called Remote Access through which you can log into one of its machines

directly to test your site on an alternative platform. This service is particularly

helpful if you’ve used JavaScript, and need to interact with your page to see how

things look. In addition to BrowserCam, free services, such as iCapture,13 which

takes screenshots of sites in Safari on OS X, and SiteVista,14 are also available.

BrowserCam Group Purchases

While a full subscription to BrowserCam might seem expensive, a low-cost way

to gain access to the service is to join up as part of a group. A group annual sub­

scription allows up to 25 people to access the service concurrently. If you don’t

have 25 friends who are willing to chip in, check out sites like Fundable,15 whose

users often organize group purchases—just perform a site search for BrowserCam.

Or you could get a bunch of people together through a web design-related mailing

list of which you are a member.

Another way to check that your site works in browsers to which you don’t have

access is to request a site check on a mailing list. Most web design and development

mailing lists and forums, including the SitePoint Forums,16 are quite used to having

users ask for people to check their sites, and you can return the favor by viewing

other people’s sites in the browsers that you use.

13 http://www.danvine.com/icapture/
14 http://www.sitevista.com/
15 http://fundable.org/
16 http://www.sitepoint.com/forums/

http://www.danvine.com/icapture/
http://www.sitevista.com/
http://fundable.org/
http://www.sitepoint.com/forums/
http://www.danvine.com/icapture/
http://www.sitevista.com/
http://fundable.org/
http://www.sitepoint.com/forums/

The CSS Anthology224

Can I install multiple versions of Internet
Explorer on Windows?
There are major differences between Internet Explorer 7 and Internet Explorer 6 in

terms of the ways they render CSS, but Windows normally allows only one version

of Internet Explorer to be installed at a time. How can we test sites in older, but still

used, versions of Internet Explorer?

Solution
Microsoft’s Virtual PC 2007 software enables us to test both Internet Explorer 6 and

7 on one computer, and is available as a free download. You’ll need to take a few

steps to get your Windows machine running Internet Explorer 7 as the main browser,

and a virtual machine running Internet Explorer 6, but this is a great way to test

your work.

1.	 Upgrade to Internet Explorer 7 if you haven’t done so already.

2.	 Download and install Virtual PC 2007 from Microsoft’s Virtual PC site.17

3.	 Download a time-limited Virtual PC virtual machine image from Microsoft’s

Download Center.18 This image comes with Microsoft Windows XP SP2 and

Internet Explorer 6 pre-installed. The beauty of using this image is that you

don’t need to pay for an additional Windows license to run it. You can get ad­

ditional information on this issue from the official Internet Explorer blog.19

4.	 To use the virtual machine image, extract the archive and start up Virtual PC.

Browse for the image files, and your separate version of Windows will start up

in a window on your desktop.

At the time of writing, Microsoft doesn’t offer virtual machine images for earlier

versions of Internet Explorer; however, some standalone versions are available to

help you spot CSS rendering issues. You can download an installer of multiple

17 http://www.microsoft.com/windows/virtualpc/default.mspx
18 http://go.microsoft.com/fwlink/?LinkId=70868
19 http://blogs.msdn.com/ie/archive/2006/11/30/ie6-and-ie7-running-on-a-single-machine.aspx

http://www.microsoft.com/windows/virtualpc/default.mspx
http://go.microsoft.com/fwlink/?LinkId=70868
http://go.microsoft.com/fwlink/?LinkId=70868
http://blogs.msdn.com/ie/archive/2006/11/30/ie6-and-ie7-running-on-a-single-machine.aspx
http://www.microsoft.com/windows/virtualpc/default.mspx
http://go.microsoft.com/fwlink/?LinkId=70868
http://blogs.msdn.com/ie/archive/2006/11/30/ie6-and-ie7-running-on-a-single-machine.aspx

225Cross-browser Techniques

standalone versions of Internet Explorer at Tredosoft.20 These browsers can be

temperamental and prone to crashing. These versions are also not reliable for testing

JavaScript, since they use the currently installed JScript engine, not the older versions

of JScript that would normally be installed with these versions of Internet Explorer.

However, these browsers are reliable enough for CSS developers who want to test

their work.

In Figure 7.3, the three browsers running on my Windows XP machine (which has

Internet Explorer 6 installed by default) display the same page: an example of a bug,

documented on Position is Everything.21 The browser at top left is Internet Explorer

5, which displays the content using its particular implementation of the box model.

The top-right browser is Internet Explorer 5.5; it displays the “phantom boxes” that

the demo is presenting. At the bottom is Internet Explorer 6, which renders the site

correctly.

Figure 7.3. Three versions of Internet Explorer running on one computer

20 http://tredosoft.com/Multiple_IE
21 http://www.positioniseverything.net/explorer/inlinelist.html

http://tredosoft.com/Multiple_IE
http://www.positioniseverything.net/explorer/inlinelist.html
http://tredosoft.com/Multiple_IE
http://www.positioniseverything.net/explorer/inlinelist.html

The CSS Anthology226

How do I display a basic style sheet for
really old browsers?
CSS is now used so extensively on the Web that users of really old browsers, such

as Netscape 4, are destined to have fairly poor online experiences, regardless of

which sites they visit. However, we can still be kind to users of these old browsers

by at least making sure that our advanced use of CSS doesn’t crash the browser, or

cause the content to be completely unreadable. To do this, we serve a very simple

style sheet to these browsers, and attach our real style sheet using a technique that

older browsers don’t understand.

Solution
Netscape 4 and other old browsers don’t understand the import method of linking

to a style sheet. We can use this fact to our advantage, serving one set of styles to

these browsers, and leaving newer browsers, which understand import, to read the

full style sheet.

In the head of your document, attach a basic style sheet using the link element—this

can be read by all browsers that support CSS. Then, attach your full style sheet (or

style sheets) using the import method, which will not be read by the old browsers:

basicstyles.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="en" lang="en">

<head>
 <meta http-equiv="content-type" content="text/html;

charset=utf-8" />
 <title>Serving a basic style sheet</title>
 <link rel="stylesheet" href="basic_basic.css" type="text/css"

media="screen" />
 <style type="text/css" media="screen">@import

"basic_default.css";</style>
</head>
<body>
 <div class="content">
 <h1>Serving a basic style sheet to old browsers</h1>

227Cross-browser Techniques

<p>CSS is now used so extensively on the web that users of really

old browsers such as Netscape 4 are going to have a pretty

poor experience all in all. However, we can still be kind to

users of really old browsers by at least making sure our

advanced use of CSS doesn't crash their browser or cause the

content to be completely unreadable. The way we do this is to

serve a very simple style sheet to these browsers and attach

our real style sheet using a manner that they do not

understand.</p>

 </div>

</body>

</html>

The basic style sheet shown below—basic_basic.css—defines some simple styles to

boost the page’s readability. You could make this style sheet slightly more advanced

if you wish, assuming you have a copy of Netscape 4 to test on, and can check that

anything you add is safe for that browser. However, at the current time, very few

people use these old browsers. Presenting them with a basic document should be

fine—it will at least ensure that the site is readable for them, in contrast to much

of the rest of the Web.

basic_basic.css

body {
 background-color: #fff;
 color: #000;
 margin: 0;
 padding: 5%;
}

body, h1, h2, h3, h4, h5, h6, ol, ul, li, p {
 font-family: verdana, arial, helvetica, sans-serif;
 color: #000;
}

Keep in mind that the newer browsers will read both the linked and imported style

sheets, so within your site’s main style sheet, you’ll need to override any of the basic

styles that you don’t want to appear in newer browsers, as well as applying the

styles you want users of newer browsers to see.

The CSS Anthology228

In the code below, I’ve added a few rules to demonstrate the effects of this approach,

which can be seen in Figure 7.4 and Figure 7.5.

basic_default.css

h1 {
 color: #cc0022;
 margin: 0;
}

.content {
 background-color: #ececec;
 padding: 0.6em;
}

Figure 7.4. The page displaying in Netscape 4.8

229Cross-browser Techniques

Figure 7.5. The same page displaying in Firefox 2

Discussion
Browsers that offer very minimal CSS support are problematic because they under­

stand just enough CSS to attempt to render your styles, but not enough to be able

to do so properly! The advanced CSS in use on an average site today is likely to

display poorly or even crash a very old browser, so hiding these styles with the help

of import prevents this. You don’t even need to add a basic style sheet—if you

simply use import on its own, those old browsers will display the document using

the browser’s internal styles.

However, the use of the basic linked style sheet offers an additional benefit: it lets

us avoid the Flash of Unstyled Content phenomenon.22 This annoying bug causes

Internet Explorer users to see the site with the default Internet Explorer styles mo­

mentarily before the styles from your style sheet load in. Adding a link before the

import—as we do in this solution—also solves that problem. So we’re able to be

kind to a couple of generations of crumbly browsers with one trick!

22 http://www.bluerobot.com/web/css/fouc.asp/

http://www.bluerobot.com/web/css/fouc.asp/
http://www.bluerobot.com/web/css/fouc.asp/

The CSS Anthology230

How do I hide some CSS from a
particular browser?
You might have discovered that certain CSS rules, or sets of rules, simply break in

newer browsers as a result of bugs in the browsers themselves. How can we hide

certain parts of our CSS in order to cope with bugs in browsers that, otherwise,

display our CSS well?

Solution
As no browser has a perfect implementation of CSS, we can make use of bugs and

features that are not supported in particular browsers to hide certain properties

from those browsers. These kinds of techniques are referred to as CSS hacks or filters.

The solution below illustrates a commonly used hack that helps us cope with the

rendering differences between Internet Explorer 5.x, and later versions of the browser.

For information about other hacks that are available, refer to the discussion below.

The Box Model Hack
Internet Explorer 5 and 5.5 interpret the CSS box model incorrectly. A correct

implementation of the CSS box model will add to the specified width of a given

block any padding and borders that have been applied to that block, to calculate

the actual visible width of the block. So a div that’s 200 pixels wide, and has 20

pixels of padding on both the right and left, and a five-pixel border, will have a total

width of 250 pixels. In the world of Internet Explorer 5, however, the width of this

div will total 200 pixels including the borders and padding. As you can imagine,

this rendering issue will make a mess of any CSS layout that relies on the precise

widths of page elements.

The problem can be seen clearly in Figure 7.6. The browser pictured at the top is

Internet Explorer 5, which, with its incorrect implementation of the box model,

displays the div 50 pixels narrower than does Internet Explorer 6. The latter browser

uses a correct implementation of the box model.

231 Cross-browser Techniques

Figure 7.6. Internet Explorer 5 and 6 displaying different implementations of the box model

Here’s the code that’s being displayed in Figure 7.6:

box-model-hack.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Box Model Hack</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="box-model-hack.css"

 />
</head>
<body>
<div id="mybox">
<p>This div has a width of 200 pixels, padding of 20 pixels and a

The CSS Anthology232

border of 5 pixels.</p>

</div>

</body>

</html>

box-model-hack.css

#mybox {
 padding: 20px;
 border: 5px solid #000000;
 background-color: #00BFFF;
 width: 200px;
}

To make Internet Explorer 5 display the box at the same width as newer browsers

that accurately comply with box model implementation, we need to specify a width

of 250 pixels for the box in Internet Explorer 5 and 5.5 only.

To achieve this, we can take advantage of a bug in the Internet Explorer 5/5.5 CSS

parser, using a method developed by Tantek Çelik:23

box-model-hack2.css

#mybox {
 padding: 20px;
 border: 5px solid #000000;
 background-color: #00BFFF;
}
#mybox {
 width: 250px;
 voice-family: "\"}\"";
 voice-family: inherit;
 width: 200px;
}
html > body #mybox {
 width: 200px;
}

With this style sheet, the two browsers agree on the width of the box, as Figure 7.7

illustrates.

23 http://tantek.com/CSS/Examples/boxmodelhack.html

http://tantek.com/CSS/Examples/boxmodelhack.html
http://tantek.com/CSS/Examples/boxmodelhack.html

233Cross-browser Techniques

Figure 7.7. The box displaying at the same width in Internet Explorer 5 and 6 after we apply the filter

This trick works because, with the hack in place, Internet Explorer 5/5.5 does not

see the second or third occurrences of the width property, and therefore renders

the box at the first specified width (250 pixels). Standards-compliant browsers

render the box at the second, correct width (200 pixels). The final declaration ad­

dresses browsers that have the same parsing bug as Internet Explorer 5/5.5, but

implement a correct box model, ensuring that they display the correct width. This

has become known as the “be nice to Opera 5” rule, as it’s one of the browsers af­

fected.

There are other versions of this hack, but when people refer to using “the box

model hack,” they’re generally talking about this or a very similar variation.

The CSS Anthology234

Discussion
The box model hack is frequently seen on web sites and within example style sheets

that are made available for download, so you may well come across it in your work,

but this solution also serves as an explanation of how to use CSS hacks and filters.

A whole range of hacks and filters is available to help you address specific browsers,

and the nature of some bugs will likely see you resort to using them.

Avoid Hacks if Possible!

Using a hack should be a last resort after you have tried to get your page to render

consistently using regular CSS techniques. Before you use a CSS hack, make sure

that it really is the only way you can achieve the effect you want. Sometimes, you

can work around a bug by changing your approach slightly; at other times, the

difference doesn’t really matter and the site still looks reasonably good in the

buggy browsers.

CSS hacks make your code less readable, and can damage the forwards-compatib­

ility of your site. CSS hacks depend on two bugs: the layout problem you’re at­

tempting to work around, and the bug that allows you to target or filter the browser.

Since it’s impossible to predict which bugs will be fixed first, avoid CSS hacks if

you can.

Choosing a Hack
If you do decide that you really must use a hack, try to find something that works

due to a lack of support in the browser from which you want to hide the CSS, rather

than an incorrect implementation of the CSS specification. That way, you’re unlikely

to have any problems when a newer browser is released.

The available information on hacks changes all the time as new browser versions

are released, and new hacks discovered, so it’s worth bookmarking a site that has

an up-to-date hacks list, and checking it for new information if you experience

problems with a specific browser.

My favorite sites for this type of information are:

■	 CSS Filters from the now-defunct dithered.com, at Communis

(http://www.communis.co.uk/dithered/css_filters/index.html)

http:dithered.com
(http://www.communis.co.uk/dithered/css_filters/index.html)

235Cross-browser Techniques

■	 the CSS Hack category on the CSS-Discuss Wiki

(http://css-discuss.incutio.com/?page=CssHack)

■	 the articles on Position Is Everything

(http://positioniseverything.net/articles.html)

Commenting Hacks
Once your hack is in place, be sure to comment it properly. When you come back

to the site at a later date, you may not remember why you implemented the hack,

and anyone who takes over from you or works on your team may become confused

by the less common hacks if they can’t see at a glance what’s going on. Here’s an

example of appropriate hack commenting:

box-model-hack2.css (excerpt)

/* box model hack ­
see http://tantek.com/CSS/Examples/boxmodelhack.html */

#mybox {
 width: 250px;
 voice-family: "\"}\"";
 voice-family: inherit;
 width: 200px;
}
html > body #mybox {
 width: 200px;
}

How can I send different styles to a
particular browser?
At the time of writing, the biggest problem for CSS developers is the large number

of people still using Internet Explorer 6—a browser that provides poor, buggy support

for much of the CSS spec. While Microsoft fixed most of the well-known bugs and

added support for much more of the CSS 2.1 spec in Internet Explorer 7, we’ve been

left with a group of users who cannot or will not upgrade beyond Internet Explorer

6.

(http://css-discuss.incutio.com/?page=CssHack)
(http://positioniseverything.net/articles.html)

The CSS Anthology236

Solution
There are two methods by which you can target Internet Explorer 6 and serve it

specific rules. Some filters exist for targeting other browsers; see “How do I hide

some CSS from a particular browser?” for details.

CSS Hacks or Filters
The first option is to use a CSS hack within your style sheet to show specific inform­

ation to the browser. For example, the star html hack is a common hack that uses

a bug in Internet Explorer 6 and 5.5 to render rules placed after * html. This hack

is commonly used to get around the lack of min-height in Internet Explorer 6:

/* rules for standards-savvy browsers, including IE7 */

.box {

 min-height: 100px;

}

/* for IE6 and below */

* html .box {

 height: 100px;

}

Internet Explorer 6 does not support min-height (the minimum height an element

should take), but it incorrectly interprets height as min-height. So, though height

is used to specify a fixed height in other browsers, Internet Explorer 6 takes it to

mean the minimum height, so the box will expand taller than 100 pixels if need be.

Of course, if we were to serve more compliant browsers height when we meant

min-height, they would chop off the bottom of our content in cases where it became

taller than 100 pixels!

To work around this issue, we first use min-height correctly for all of the other

browsers; then, we use the star html hack before the selector that only Internet Ex­

plorer 5.5 and Internet Explorer 6 will take note of. More compliant browsers will

ignore this hack.

Conditional Comments
The second method we can use to target our rules to specific browsers is conditional

comments. We use these to link to our page a style sheet that’s read only by the

version of Internet Explorer that’s targeted by the comments. This approach is very

237Cross-browser Techniques

useful if you have a lot of rules that are specific to a particular version of Internet

Explorer. The conditional comments need to go into the head of your docu­

ment—you’d usually include them as the last style sheet in the head, as it’s likely

that you’ll override rules that apply to other browsers with your Internet Explorer

tweaks.

First, create your style sheet containing the Internet Explorer fixes—you don’t need

to duplicate your entire style sheet, just override or add the rules necessary to help

Internet Explorer behave. Then, include the link to the style sheet within a condi­

tional comment in the head of your document, like this:

<!--[if IE 6]>

<link rel="stylesheet" type="text/css" href="ie6.css" />

<![endif]-->

Discussion
Choosing whether to use a filter or conditional comments will depend on the amount

of edits you need to make to your style sheet to have Internet Explorer 6 render your

page appropriately.

If you have just a couple of min-height fixes to add, it may make more sense to use

the star html hack and be able to keep that Internet Explorer 6 information in the

same place as the real style rules (commented, of course!). But if you have a lot of

changes to make, another style sheet will keep them tidily out of the way. In the

solutions that follow, we’ll look at the use of conditional comments to serve Internet

Explorer 6 an additional style sheet as well as a JavaScript file.

How do I achieve alpha transparency in
Internet Explorer 6?
One of the exciting additions to Internet Explorer 7 was support of PNG transparency.

As I showed in Chapter 3 when we discussed background images, alpha transparency

can give you true transparency, allowing overlaid images to display across different

background colors without showing a pixelated halo, and allowing designers to

create effects using opaque background layers. However, if you simply go ahead

and use transparent PNGs, users of Internet Explorer 6 will see solid images like

The CSS Anthology238

those shown in Figure 7.8. Is there anything that can be done to get transparent

PNGs to play nicely with Internet Explorer 6?

Figure 7.8. Internet Explorer 6 displaying the transparent PNG images as solid images

Solution
There is a way to get transparent PNGs to appear to work in Internet Explorer 6, but

it involves the use of JavaScript. The solution was originally devised by Aaron

Boodman24 and edited by Drew McLellan in order to support background images.25

First, create a 1×1px transparent GIF, and save it as x.gif.

24 http://webapp.youngpup.net/?request=/snippets/sleight.xml
25 http://allinthehead.com/retro/289/sleight-update-alpha-png-backgrounds-in-ie

http://webapp.youngpup.net/?request=/snippets/sleight.xml
http://webapp.youngpup.net/?request=/snippets/sleight.xml
http://allinthehead.com/retro/289/sleight-update-alpha-png-backgrounds-in-ie
http://webapp.youngpup.net/?request=/snippets/sleight.xml
http://allinthehead.com/retro/289/sleight-update-alpha-png-backgrounds-in-ie

239Cross-browser Techniques

Now, create a new JavaScript file (which we’ll include only for Internet Explorer

6), and add the following JavaScript:

bgsleight.js

function addLoadEvent(func) {
 var oldonload = window.onload;
 if (typeof window.onload != 'function') {
 window.onload = func;

 } else {
 window.onload = function() {
 if (oldonload) {
 oldonload();

 }
 func();

 }
 }
}

var bgsleight = function() {

function fnLoadPngs() {
var rslt = navigator.appVersion.match(/MSIE (\d+\.\d+)/, '');
var itsAllGood = (rslt != null && Number(rslt[1]) >= 5.5);
for (var i = document.all.length - 1, obj = null; (obj =

document.all[i]); i--) {
 if (itsAllGood &&

obj.currentStyle.backgroundImage.match(/\.png/i) != null) {
 fnFixPng(obj);
 obj.attachEvent("onpropertychange", fnPropertyChanged);

 }
 if ((obj.tagName=='A' || obj.tagName=='INPUT') &&

obj.style.position == ''){
 obj.style.position = 'relative';
 }
 }
}

function fnPropertyChanged() {
 if (window.event.propertyName == "style.backgroundImage") {
 var el = window.event.srcElement;
 if (!el.currentStyle.backgroundImage.match(/x\.gif/i)) {
 var bg = el.currentStyle.backgroundImage;

The CSS Anthology240

var src = bg.substring(5,bg.length-2);

 el.filters.item(0).src = src;

 el.style.backgroundImage = "url(/img/shim.gif)";

 }

 }

 }

function fnFixPng(obj) {

 var mode = 'scale';

 var bg = obj.currentStyle.backgroundImage;

 var src = bg.substring(5,bg.length-2);

 if (obj.currentStyle.backgroundRepeat == 'no-repeat') mode =

'crop';

 obj.style.filter =

"progid:DXImageTransform.Microsoft.AlphaImageLoader(src='"

+ src + "', sizingMethod='" + mode + "')";

 obj.style.backgroundImage = "url(/img/shim.gif)";

 }

 return {

 init: function() {

 if (navigator.platform == "Win32" && navigator.appName ==

"Microsoft Internet Explorer" && window.attachEvent) {

 addLoadEvent(fnLoadPngs);

 }

 }

}

}();

bgsleight.init();

Use a conditional comment to include the new JavaScript file so that it’s used only

by Internet Explorer:

bgsleight.html (excerpt)

<!--[if IE 6]>
<script type="text/javascript" src="bgsleight.js"></script>
<![endif]-->

If you save your page and view it in Internet Explorer at this point, you’ll see that

the background attached to the div element with ID content has disappeared. To

make it display again, we’ll need to give it a height. A height of just 1% will

241 Cross-browser Techniques

do—Internet Explorer will treat that as min-height, and will expand the div to

contain all of its contents. As we want only Internet Explorer to see this height

value, we can either put it in a style element in the document’s head, or add it to

a separate Internet Explorer 6-only style sheet that’s linked to from within the con­

ditional comments:

bgsleight.html (excerpt)

<!--[if IE 6]>
<style type="text/css">
#content {
 height: 1%;
}
</style>
<script type="text/javascript" src="bgsleight.js"></script>
<![endif]-->

Refresh your page in Internet Explorer, and the opaque background will display

over the background color, as shown in Figure 7.9.

The CSS Anthology242

Figure 7.9. Internet Explorer 6 displaying the transparent PNG images

Discussion
This hack can be somewhat problematic. You may find that areas of the page appear

as if covered by the background image, which makes links unclickable and text input

fields unable to take focus. If that happens, you’ll usually find that adding position:

relative to the element fixes the problem, but it will also add a layer of complication

to your work. That said, this option does enable the design flexibility that results

from the use of proper transparency, and with a bit of care you can get it to work

well.

243Cross-browser Techniques

Avoiding the Hack

Another way to deal with the issue would be to create different images for Internet

Explorer 6, and add an Internet Explorer 6 style sheet that used non-transparent

images to override the PNGs used for other browsers. The site would look different

in Internet Explorer 6, but as that browser’s usage declines, this may become an

acceptable solution.

What is DOCTYPE switching and how do
I use it?
You’re developing a site using XHTML and CSS, testing in Internet Explorer 6 and

7, and it all seems to be going well … Then you look at the layout with Mozilla and

realize it’s displaying very differently to the way it’s rendering in Internet Explorer.

What’s going on?

Solution
Internet Explorer bugs aside, the most likely issue is that Internet Explorer is ren­

dering your document in Quirks Mode. Many modern browsers have two rendering

modes. Quirks Mode renders documents according to the buggy implementations

of older browsers such as Netscape 4 and Internet Explorer 4 and 5. Standards or

Compliance Mode renders documents as per the W3C specifications.

■	 Documents that use older DOCTYPEs, are poorly formed, or have no DOCTYPE at

all, display using Quirks Mode.

■	 Documents that are using strict HTML or XHTML DOCTYPEs render using Com­

pliance Mode.

Unfortunately, it’s not quite as simple as that where Internet Explorer 6 is concerned.

For example, if you include anything at all above the DOCTYPE statement—including

the XML declaration—Internet Explorer 6 will render in Quirks Mode.

The CSS Anthology244

Figure 7.10. Internet Explorer in Quirks Mode rendering the same document differently than Firefox in Compliance Mode

Figure 7.10 shows the following document rendered in both Mozilla Firefox (at the

top) and Internet Explorer 6 (at the bottom).

doctype-quirks.html

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>DOCTYPE Example</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="box-model-hack.css"

 />

245Cross-browser Techniques

</head>

<body>

<div id="mybox">

 <p>This div has a width of 200 pixels, padding of 20 pixels and

 a border of 5 pixels.</p>

</div>

</body>

</html>

If you read about the box model hack in “How do I hide some CSS from a particular

browser?”, you might realize that, in Figure 7.10, Internet Explorer 6 renders the

page with the broken CSS Box Model implementation used by Internet Explorer 5

and 5.5. It does so because we included the xml declaration above the DOCTYPE. If

you delete this from the document, so that the DOCTYPE declaration is the first thing

on the page, as shown in the code below, Internet Explorer will render in Compliance

Mode, as Figure 7.11 illustrates. Internet Explorer 7 will not switch into Quirks

Mode when it encounters an XML prologue, however, so it behaves much like the

other newer browsers in that respect.

doctype-compliance.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>DOCTYPE Example</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="box-model-hack.css"

 />
</head>
<body>
<div id="mybox">
 <p>This div has a width of 200 pixels, padding of 20 pixels and
 a border of 5 pixels.</p>

</div>
</body>
</html>

The CSS Anthology246

Figure 7.11. Internet Explorer and Firefox rendering the page in Compliance Mode

Discussion
If you’re building a new site, I recommend that you aim to meet the requirements

of Compliance Mode, whichever DTD you’re working to. New browsers will be

likely to support the W3C standards and will render pages using those standards

whether or not they support any DOCTYPE switching.

If you continue to design for older browsers, and rely on Quirks Mode in their

newer counterparts, you may find that your site doesn’t work in a browser that

doesn’t have a Quirks Mode. It’s better to work in Compliance Mode in new browsers,

and deal with the older browsers using the fixes we’ve already discussed, as these

are a known entity—the latest version of Mozilla is not!

247Cross-browser Techniques

The following DOCTYPEs should force the browsers that support DOCTYPE switch­

ing—Internet Explorer 6, Mozilla, Internet Explorer 5 Mac, and Opera 7—into

Compliance Mode. Remember that even a comment above the DOCTYPE statement

will switch Internet Explorer 6 back into Quirks Mode.26

HTML 4.01 Transitional

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

HTML 4.01 Frameset

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"

 "http://www.w3.org/TR/html4/frameset.dtd">

HTML 4.01 Strict

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

XHTML 1.0 Transitional

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 Frameset

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

XHTML 1.0 Strict

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

26 A full list of DOCTYPEs, and their effects on various browsers, is available at

http://gutfeldt.ch/matthias/articles/doctypeswitch/table.html.

"http://www.w3.org/TR/html4/loose.dtd">
"http://www.w3.org/TR/html4/frameset.dtd">
"http://www.w3.org/TR/html4/strict.dtd">
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
http://gutfeldt.ch/matthias/articles/doctypeswitch/table.html

The CSS Anthology248

XHTML 1.1

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

I think I’ve found a CSS bug! What do I do?
We all find ourselves in situations in which our CSS just will not work! Though

you’ve tried every solution you can think of, some random bit of text continues to

appear and disappear in Internet Explorer 6, or part of your layout spreads across

half the content in Safari. Before the bug drives you mad, take a deep breath and

relax. There is a solution!

Solution
This is a solution that helps you find the solution!

1. Take a break.

Once we designers have gotten frustrated battling a problem, to apply any kind

of rational process for finding a solution is difficult at best. So take a break. Go

for a walk, tidy your desk, or do some housework. If you’re at work with your

boss looking over your shoulder so that you can’t even get to the coffee machine

in peace, work on something else—answer some mail, tidy up some content.

Do anything to take your mind off the problem for a while.

2. Validate your style sheet and document.

If you haven’t already done so, your next step should be to validate the CSS

and the (X)HTML document. Errors in your CSS or markup may well cause

problems and, even if they’re not the actual cause of your bug, they often make

it more difficult to find a solution.

3. Isolate the problem.

Can you get your bug to occur in isolation from the rest of your document? CSS

bugs often display only when a certain group of conditions is met, so trying to

find out exactly where the problem occurs may help you work out how it can

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

249Cross-browser Techniques

be fixed. Try and reproduce the problem in a document that doesn’t contain

the rest of your layout.

4. Search the Web.

If what you have is a browser bug, it’s likely that someone else has seen it before.

There are plenty of great sites that detail browser bugs and explain how to get

around them. I always check the following sites when I’m up against a problem:

■	 CSS Pointers Group, at http://css.nu/pointers/bugs.html

■	 Position is Everything, at http://www.positioniseverything.net/

■	 The Browser Bug Category on the css-d wiki, at

http://css-discuss.incutio.com/?page=CategoryBrowserBug

Also, search the css-discuss archives,27 and don’t forget Google!

5. Ask for help.

If you haven’t managed to find a solution as you’ve moved through the above

steps, ask for help. Even the most experienced developers hit problems that

they just can’t see past. Sometimes, just talking through the issue with a bunch

of people who haven’t been staring at it all week can help you resolve the

problem, or come up with new ideas to test—even if no one has an immediate

solution.

When you post to a forum or mailing list, remember these rules of thumb:

■	 If the list or forum has archives, search them first, just in case you’re about

to ask one of those questions that’s asked at least once a day.

■	 Make sure that your CSS and HTML validates; otherwise, the answer you’ll

get is most likely to be, “go and validate your document and see if that

helps.”

■	 Upload an example to a location to which you can link from your forum

post. If you manage to reproduce the problem outside a complex layout, so

27 http://www.css-discuss.org/

http://www.css-discuss.org/
http://css.nu/pointers/bugs.html
http://www.positioniseverything.net/
http://css-discuss.incutio.com/?page=CategoryBrowserBug
http://www.css-discuss.org/

The CSS Anthology250

much the better—this will make it easier for others to work out what’s going

on.

■	 Explain the solutions you’ve tried so far. This saves the recipients of your

message from pursuing those same dead-ends, and shows that you’ve attemp­

ted to fix the problem yourself before asking for help.

■	 Give your message a descriptive subject line. People are more likely to read

a post entitled, “Duplicate boxes appearing in IE5” than one that screams,

“HELP!” Good titles also make the list archives more useful, as people can

see at a glance the titles of posts in a thread.

■	 Be polite and to the point.

■	 Be patient while you wait for answers. If you don’t receive a reply after a

day or so, and it’s a busy list, it is usually acceptable to post again with the

word “REPOST” in the subject line. Posts can be overlooked in particularly

large boards, and this is a polite way to remind users that you have not re­

ceived any assistance with your problem.

■	 When you receive answers, try implementing the poster’s suggestions. Don’t

get upset or angry if the recommendations don’t work, or you feel that the

poster is asking you to try very basic things. I’ve seen threads go on for many

posts as different posters weigh in to help someone solve a problem, and

continue the discussion until a solution is found. Give people a chance to

help!

■	 If you find a solution—or you don’t, and decide instead to change your

design to avoid the problem—post to the thread to explain what worked

and what didn’t. This shows good manners towards those who helped you,

but will also help anyone who searches the archive for information on the

same problem. It’s very frustrating to search an archive and find several

possible solutions to a problem, but to not know which (if any) was success­

ful!

251 Cross-browser Techniques

Many web design and development mailing lists are used by people who are very

knowledgeable about CSS. In my opinion, the best CSS-specific list is css-discuss.28

It’s a high-traffic list, but the people on it are very helpful, and you can pick up a

lot just by reading the posts and browsing the archives. SitePoint also has a great,

active CSS forum full of helpful and experienced people.29

See the next solution for a real-world walkthrough of a common bug, and the process

you might take to find a solution and fix it.

Some of my content is appearing and
disappearing in Internet Explorer 6!
What should I do?
In one incarnation of my business site, I added some images to the site and all

seemed well in my default browser—Mozilla Firefox—as Figure 7.12 shows. Then,

I checked it in Internet Explorer 6. What I saw was the page displayed in Fig­

ure 7.13—two paragraphs of text were missing in action! If I refreshed the page, or

scrolled, the text reappeared. Something very odd was going on!

Solution
In this solution, I’ll step you through the process I used to resolve this bug, in order

to show you the tactics you might use when you’re up against a problem of this

type.

First, I checked my document at the W3C markup validator,30 and my CSS at the

W3C CSS Validator.31 I wanted to make sure that there was no problem within my

document, or the CSS, that would cause Internet Explorer 6 to behave strangely.

Both the document and the CSS were valid, so I knew the problem wasn’t related

to this.

28 http://www.css-discuss.org/
29 http://www.sitepoint.com/launch/cssforum/
30 http://validator.w3.org
31 http://jigsaw.w3.org/css-validator/

http://www.css-discuss.org/
http://www.sitepoint.com/launch/cssforum/
http://validator.w3.org
http://jigsaw.w3.org/css-validator/
http://www.css-discuss.org/
http://www.sitepoint.com/launch/cssforum/
http://validator.w3.org
http://jigsaw.w3.org/css-validator/

The CSS Anthology252

Figure 7.12. The document displaying as expected in Firefox

Figure 7.13. The document rendering poorly in Internet Explorer 6

253Cross-browser Techniques

Isolating the Problem
It was time to isolate the problem, which meant looking closely at the code. In this

particular design, each book is described within a div container with a class of

cBlock. Within cBlock, I have a paragraph with a class of booktext, an image, and

a normal paragraph. The style sheet sets up various margins and padding, floats the

image to the left, and makes sure that the normal paragraph is clear of the floated

image:

<h1>Books and articles</h1>

<p>Rachel Andrew, founder of edgeofmyseat.com…</p>

<h2>Books</h2>

<h3>The Dreamweaver Developer's Instant Troubleshooter</h3>

<div class="cBlock">

 <p class="booktext">

 <img src="img/instant_troubleshooter.jpg" width="100"

 height="124" alt="Cover" />

 Solving the most common problems faced by Dreamweaver users

 with the aid of some of the most respected names in the

 community.

 </p>

 <p>

 Published by Apress

 available from: <a href="http://www.amazon.com/exec/obidos/ASI

N/1590592336/edgeofmyseat-20">amazon.com

 Authors: Rachel Andrew, Gareth Downes-Powell, Nancy Gill,

 Kevin Marshall, Drew McLellan

 ISBN: 1590592336

 </p>

</div>

.cBlock {

 margin-top: 10px;

}

.cBlock p.booktext {

 padding-left: 30px;

 padding-right: 20px;

 padding-top: 10px;

 color: #4E475F;

 background-color: transparent;

 clear: none;

}

The CSS Anthology254

.cBlock img {

 float: left;

 margin: 0 10px 4px 0;

 border: 1px solid #4E475F;

}

.cBlock p {

 clear: both;

}

By toying with the document and CSS, I discovered that if I removed the float

property from the image, the problem disappeared, so I was fairly sure that was the

source of the problem. However, I wanted to keep the floated image as it

was—without it, the text would not display to the right of the image, as Figure 7.14

shows.

Figure 7.14. Fixing the disappearing text problem by removing the float property

255Cross-browser Techniques

Searching the Web
I now knew what caused the problem, so I decided to see whether I could find any

details on this bug, or a method to fix it. My layout wasn’t very complicated, so I

figured that if I was seeing this problem, other people would have seen it, too.

On the Position is Everything web site, I found details of the Internet Explorer 6

Peekaboo Bug:32

A liquid box has a float inside, and content that appears alongside

that float. All is well, until it’s viewed in IE 6. “Wah? Where’s my

content?!” You reload the page, and nothing. When you scroll down,

or perhaps switch to another window, upon returning to the ‘scene

of the crime’ there it all is, fat ’n sassy!

That sounded just like my bug! Better still, the page gave me some information on

how to get rid of it. I decided to try out the newest method presented there: “The

Holly Hack.” This seemed to be the one that would have the least impact on my

layout, which worked in other browsers.

This method utilizes a CSS hack that was developed to cure another Internet Explorer

6-specific problem.33 Looking down the page, I found the CSS that seemed as if it

should fix the problem, so I added it to my style sheet:

.cBlock {

 margin-top: 10px;

}

.cBlock p.booktext {

 padding-left: 30px;

 padding-right: 20px;

 padding-top: 10px;

 color: #4E475F;

 background-color: transparent;

 clear: none

}

.cBlock img {

 float: left;

 margin: 0 10px 4px 0;

32 http://www.positioniseverything.net/explorer/peekaboo.html
33 http://www.positioniseverything.net/explorer/threepxtest.html

http://www.positioniseverything.net/explorer/peekaboo.html
http://www.positioniseverything.net/explorer/peekaboo.html
http://www.positioniseverything.net/explorer/threepxtest.html
http://www.positioniseverything.net/explorer/threepxtest.html
http://www.positioniseverything.net/explorer/peekaboo.html
http://www.positioniseverything.net/explorer/threepxtest.html

The CSS Anthology256

border: 1px solid #4E475F;

}

/* Hide from IE5-mac. Only IE-win sees this.

The Holly Hack ­

http://www.positioniseverything.net/explorer/threepxtest.html

Used to combat the IE6 Peekaboo Bug

*/

* html .cBlock img {

 margin-right: 10px;

}

* html p {

 height: 1%;

 margin-left: 0;

}

/* End hide from IE5/mac

End Holly Hack*/

.cBlock p {

 clear: both;

}

Upon testing the page again in Internet Explorer 6, I saw that the problem had indeed

vanished. I then checked the site in other browsers, just to be sure that it didn’t

cause any unwanted side-effects. It’s always a good idea to test your site again in

all browsers after you implement a hack. Even though sites that demonstrate these

hacks tend to be kept up to date, and users will let the owners know if a solution

is found to cause issues in any browser, there may be problems that haven’t been

uncovered yet—or, you may have made a mistake as you implemented the hack.

What do the error and warning messages
in the W3C Validator mean?
Validating your documents and CSS is an important step in ensuring that your site

renders correctly in standards-complaint browsers. Sometimes, however, the error

and warning messages can be very confusing.

http://www.positioniseverything.net/explorer/threepxtest.html

257Cross-browser Techniques

Solution
You can validate your (X)HTML documents online at the W3C Validator;34 CSS

documents can be validated at the W3C CSS Validator.35 Many authoring tools,

such as Dreamweaver, have inbuilt validators, and plugins are available for browsers

such as Firefox to help you to validate your pages.36

With both CSS and (X)HTML documents, start validating at the top. Sometimes,

you’ll run a document through the validator and receive a huge list of errors. How­

ever, when you fix the first error that the validator has encountered, many of the

subsequent errors often disappear. This is especially likely to occur in an (X)HTML

document. If you have forgotten to close a tag correctly, the validator believes that

the tag is still open, and it will give you a whole list of errors to tell you that element

X is not allowed within element Y. Close the offending tag and those errors will

instantly be resolved.

A related problem is found in documents with an HTML DTD, where the developer

has closed a tag using XML syntax, like this:

<link rel="stylesheet" href="stylesheet.css" type="text/css" />

If you’ve done this in a document that doesn’t have an XHTML DOCTYPE, you’ll re­

ceive errors indicating that there is a closing HEAD element in the wrong place. To

make the document obey the HTML standard, simply remove the slash from the

tag:

<link rel="stylesheet" href="stylesheet.css" type="text/css">

Errors and Warnings
A CSS document is not valid CSS if it contains errors such as invalid syntax, missing

semicolons, and so on. You will need to fix these errors to have the document val­

idate, and to ensure that your style sheet behaves as expected.

34 http://validator.w3.org/
35 http://jigsaw.w3.org/css-validator/
36 http://users.skynet.be/mgueury/mozilla/

http://validator.w3.org/
http://jigsaw.w3.org/css-validator/
http://users.skynet.be/mgueury/mozilla/
http://validator.w3.org/
http://jigsaw.w3.org/css-validator/
http://users.skynet.be/mgueury/mozilla/

The CSS Anthology258

If your style sheet is error-free, it will validate. A valid document, however, may

still contain warnings when you run it through the validator. Whether you take

notice of these warnings or not is entirely up to you. The most common warning

states that you have failed to specify an acceptable background color for a specific

element. This could indicate a problem with your design—for example, your design

could result in part of the text on your page being rendered unreadable—or it could

simply indicate an aspect of your design that has the potential to cause problems,

even if you’ve intentionally designed it that way (for instance, you’re expecting the

background of an element beneath the element in question to show through).

Warnings should act as a reminder to check you haven’t forgotten anything, but

remember that a style sheet that validates with warnings is still perfectly valid!

Summary
This chapter has covered a wide range of solutions to problems that you may not

have experienced so far. This will almost certainly be the case if you have not yet

designed sites that use CSS, rather than tables, for positioning. It’s at that point that

the more interesting browser bugs start to rear their ugly heads, and testing in a

wide range of browsers, and browser versions, becomes very important indeed.

What I hope to have shown you in this chapter is how I go about testing sites,

finding bugs, and getting help. I’ve also aimed to broaden your options in terms of

displaying your pages appropriately for different users. If you’re reading through

this book chapter by chapter, you might find that much of this information makes

more sense in light of Chapter 9, which deals with the use of CSS for layout.

Chapter8
Accessibility and Alternative Devices
CSS allows us to separate the structure and content of our documents from the

presentation of the site. This means that visitors using devices that can’t render the

site’s design—either because they’re limited from a technical standpoint, such as

some PDA or phone browsers, or as a result of their own functional advantages,

such as screen readers that speak a page’s text for the benefit of visually impaired

users—will still be able to access the content. However, we’re still free to create

beautiful designs for the majority of users who do have browsers that support CSS.

While separating content and structure from presentation, and considering how

best to structure the underlying document, will mean that users of screen readers

and browsers that don’t support CSS can easily understand your site, you still need

to be aware of other users who, though they can see the design of the site, have

particular accessibility-related needs. Simply using CSS for layout purposes does

not make your site accessible to everyone. For example, many people who suffer

some kind of vision loss can read text that’s clearly laid out and can be enlarged.

This chapter also covers the use of alternative style sheets (also called alternate

style sheets), style sheets for different media (such as print style sheets), and browser-

based style sheet switching with the aid of JavaScript.

The CSS Anthology260

How do I test my site in a text-only
browser?
Checking your site using a text-only browser is an excellent way to find out how

accessible it really is. If you find it easy to navigate your site using a text-only

browser, it’s likely that visitors using screen readers will also be able to do so.

Solution
You can view pages from your site using Lynx, a text-only browser, through the

online Lynx Viewer.1 While this is a useful test, Lynx is free to download and install,

so why not install a copy on your system? This option provides the added advantage

that you’ll be able to test pages before you upload them to the Web.

Linux/Unix Users
You may find that Lynx is already installed on your system; if not, you should be

able to obtain a copy easily via your package management system. Alternatively,

you can download the source from the Lynx software distribution site.2

Windows Users
Installing Lynx on Windows used to be a tricky process, but now an installer is

available from csant.info.3 Download and run the installer, which will also make

Lynx available from your Start menu.

Mac OS X Users
Lynx for Mac OS X is available from the Apple web site.4

Discussion
Lynx behaves consistently across all platforms, but you’ll need to learn a few simple

commands in order to use it for web browsing. Figure 8.1 shows a typical site dis­

played in Lynx.

1 http://www.delorie.com/web/lynxview.html
2 http://lynx.isc.org/release/
3 http://www.csant.info/lynx.htm
4 http://www.apple.com/downloads/macosx/unix_open_source/lynxtextwebbrowser.html

http://www.delorie.com/web/lynxview.html
http://lynx.isc.org/release/
http://www.csant.info/lynx.htm
http://www.apple.com/downloads/macosx/unix_open_source/lynxtextwebbrowser.html
http://www.delorie.com/web/lynxview.html
http://lynx.isc.org/release/
http://www.csant.info/lynx.htm
http://www.apple.com/downloads/macosx/unix_open_source/lynxtextwebbrowser.html

261 Accessibility and Alternative Devices

Figure 8.1. Viewing a site in Lynx

To open a web page, hit G and enter the URL. Press Enter, and Lynx will load that

URL. If the site that you’re trying to visit uses any form of cookies, Lynx will ask

you if you wish to accept them. Type Y for yes, N for no, A to accept cookies from

that site always, or V to ensure that you never accept cookies from that site.

Use the arrow keys to navigate using Lynx. The up and down arrow keys will let

you jump from link to link. The right arrow key will follow the link that you’re

currently on, while the left arrow key will take you back to the previous page.

To complete a form, navigate to each form field using the down arrow key and, once

you’re there, type normally into the field.

You can use Lynx to view local files, which is useful during development. If you’re

running a local web server, such as Apache or IIS, you can just point Lynx to local-

host URLs. Note, though, that the browser will also read an HTML file directly if

you provide it with the path and filename.

For more information on how to use Lynx, hit H to display the help system, which

you can navigate as you would any site.

The CSS Anthology262

See Accessibility in Action

Spend some time visiting your favorite sites in a text-only browser—you’ll soon

start to appreciate how important it is to ensure that you have alt text on images,

and a well-structured document!

How do I test my site in a screen reader?
The best way to understand the experience had by a user visiting your site with a

screen reader is to try it out for yourself; however, the most popular and well-known

screen reader in use today, JAWS, is expensive (although there is a demonstration

version available that will run for 40 minutes) and entails a steep learning curve.

What other options do web developers have to test their sites in a screen reader?

Solution
The free Firefox extension, Fire Vox, can give you an excellent impression of the

way a site sounds when it’s read through a screen reader, and is available as a

download for those running Firefox on Windows, Mac OS X, or Linux. Download

Fire Vox from the author, Charles L. Chen’s web site,5 and follow the installation

instructions for your operating system. The brief tutorial offered on the site will

help you get started using Fire Vox.

Discussion
While trying out a screen reader is a great way to get a feel for the experience a

visually impaired user has online, it’s impossible for those of us who have good

vision to really understand the experience, or even, with the limited use of screen

readers in site testing, to become as adept with the software as do those who rely

on it to use the Web. So unless you have time to learn to use the software properly,

testing sites with a screen reader should be seen as an activity that will help you to

gain insight into these users’ experiences, rather than as a true test of your site’s

screen reader compatibility.

5 http://www.firevox.clcworld.net/downloads.html

http://www.firevox.clcworld.net/downloads.html
http://www.firevox.clcworld.net/downloads.html

263Accessibility and Alternative Devices

How do I create style sheets for specific
devices, such as screen readers or WebTV?
It’s possible to show different CSS to different browsers, but what about other

devices?

Solution
The CSS specification includes a specification for media types, which allow web

page authors to restrict a style sheet, or section of a style sheet, to a given medium.

You can tag a style sheet with any of these media types. For example, the following

markup tags the linked style sheet for use by aural browsers:

<link rel="stylesheet" type=text/css" href="aural.css"

media="aural" />

In-page style sheets can also be tagged this way:

<style type="text/css" media="all">

⋮
</style>

In both these examples, the media attribute has a value of the media type for which

the style sheet has been created. This style sheet will only be used by devices that

support the specified media type.

Discussion
The following list of media types is taken from the CSS2.1 specification.6

all suitable for all devices

braille intended for tactile feedback devices, such as braille browsers

embossed intended for paged braille printers

6 http://www.w3.org/TR/CSS21/media.html#media-types

http://www.w3.org/TR/CSS21/media.html#media-types
http://www.w3.org/TR/CSS21/media.html#media-types

The CSS Anthology264

handheld	 intended for handheld devices (typically small screen, limited-

bandwidth devices)

print	 intended for paged material and for documents viewed on screen in

Print Preview mode

projection	 intended for projected presentations

screen	 intended primarily for color computer screens

speech	 intended for speech synthesizers (Note that CSS2 had a similar media

type called aural for this purpose.)

tty	 intended for media using a fixed-pitch character grid (such as tele­

types, terminals, or portable devices with limited display capabilit­

ies); authors should not use pixel units with the tty media type

tv	 intended for television-type devices (low resolution, color, limited­

scrollability screens with sound available)

In addition to the media attribute described above, we can address multiple media

types in one style sheet using the media at-rule.

Here’s an example of this approach in action. The style sheet below dictates that

printed documents will print with a font size of ten points, while on the screen, the

font will display at a size of 12 pixels. Both print and screen devices will display

the text in black:

@media print {

 body {

 font-size: 10pt;

 }

}

@media screen {

 body {

 font-size: 12px;

 }

}

@media screen, print {

 body {

 color: #000000;

265Accessibility and Alternative Devices

}

}

Currently, there are very few devices that fully support the media types you would

expect them to. At the time of this writing, Emacspeak7 with the Emacs/w38 browser

is the only known screen reader/browser combination that supports speech or

aural CSS media types.

Most mobile browsers have either very minimal or no CSS support. Those that do

support CSS tend to honor screen styles, while support for the handheld media

attribute remains buggy. The standout exceptions are Opera Mini and Opera Mobile,

which honor handheld styles while ignoring screen styles, in accordance with the

standards.

The media type that’s most usefully supported by modern browsers is the print

media type. The next solution discusses how you can use this media type to create

print versions of your pages.

Don’t Start from Scratch

If you’re creating a style sheet for a new media type, the easiest way to get started

is to save a copy of your existing style sheet under a new name. That way, you

already have all your selectors at hand, and can simply change the styles that

you’ve created for each.

How do I create a print style sheet?
Web pages rarely print well, as techniques that are designed to make a page look

good on a screen are usually different from those used to create a document that

prints well. However, it’s possible to use the CSS media types to provide a style

sheet that’s applied when the document is printed.

Solution
We can create a special print style sheet for our visitors like so:

7 http://emacspeak.sourceforge.net/
8 http://www.gnu.org/software/w3/

http://emacspeak.sourceforge.net/
http://www.gnu.org/software/w3/
http://emacspeak.sourceforge.net/
http://www.gnu.org/software/w3/

print-stylesheet.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Print Style Sheet</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="main.css"

 title="default" />
<link rel="stylesheet" type="text/css" href="print.css"

 media="print" />
</head>
<body>
<div id="banner"></div>
<div id="content">
 <h1>Chinese-style stuffed peppers</h1>
 <p>These stuffed peppers are lovely as a starter, or as a side
 dish for a Chinese meal. They also go down well as part of a
 buffet and even children seem to like them.</p>

 <h2>Ingredients</h2>
⋮

</div>
<div id="navigation">
 <ul id="mainnav">
 Recipes
 Contact Us
 Articles
 Buy Online

</div>
</body>
</html>

main.css

body, html {
 margin: 0;
 padding: 0;
}
#navigation {
 width: 200px;
 font: 90% Arial, Helvetica, sans-serif;

The CSS Anthology266

267Accessibility and Alternative Devices

position: absolute;

 top: 41px;

 left: 0;

}

#navigation ul {

 list-style: none;

 margin: 0;

 padding: 0;

 border: none;

}

#navigation li {

 border-bottom: 1px solid #ED9F9F;

 margin: 0;

}

#navigation li a:link, #navigation li a:visited {

 display: block;

 padding: 5px 5px 5px 0.5em;

 border-left: 12px solid #711515;

 border-right: 1px solid #711515;

 color: #ffffff;

 background-color: #b51032;

 text-decoration: none;

}

#navigation li a:hover {

 color: #ffffff;

 background-color: #711515;

}

#content {

 margin-left: 260px;

 margin-right: 60px;

}

#banner {

 height: 40px;

 background-color: #711515;

 border-bottom: 1px solid #ED9F9F;

 text-align: right;

 padding-right: 20px;

 margin-top: 0;

}

#banner ul {

 margin: 0;

 padding: 0;

}

#banner li {

The CSS Anthology268

display: inline;

}

#banner a:link, #banner a:visited {

 font: 80% Arial, Helvetica, sans-serif;

 color: #ffffff;

 background-color: transparent;

}

#content p, #content li {

 font: 80%/1.6em Arial, Helvetica, sans-serif;

}

#content p {

 margin-left: 1.5em;

}

#content h1, #content h2 {

 font: 140% Georgia, "Times New Roman", Times, serif;

 color: #B51032;

 background-color: transparent;

}

#content h2 {

 font: 120% Georgia, "Times New Roman", Times, serif;

 padding-bottom: 3px;

 border-bottom: 1px dotted #ED9F9F;

}

print.css

body, html {
 margin: 0;
 padding: 0;
}
#navigation {
 display: none;
}
#content {
 margin-left: 20pt;
 margin-right: 30pt;
}
#banner {
 display: none;
}
#content p, #content li {
 font: 12pt/20pt "Times New Roman", Times, serif;
}
#content p {

269Accessibility and Alternative Devices

margin-left: 20pt;

}

#content h1, #content h2 {

 font: 16pt Georgia, "Times New Roman", Times, serif;

 color: #4b4b4b;

 background-color: transparent;

}

#content h2 {

 font: 14pt Georgia, "Times New Roman", Times, serif;

 padding-bottom: 2pt;

 border-bottom: 1pt dotted #cccccc;

}

Discussion
Creating a print style sheet can be very helpful to your visitors, particularly if your

page has many graphics. Printing pages from a site that has many graphics can be

costly in terms of printer ink, and slow on older printers. And some sites really

don’t print well at all because of the color combinations or layouts used. For example,

Figure 8.2 shows a page that has a simple two-column CSS layout, with navigation

in the sidebar, and a main content area that contains a recipe.

Figure 8.2. Displaying a two-column layout in the browser

The CSS Anthology270

Figure 8.3 shows this layout in Print Preview, which reflects the way it would appear

when printed.

Figure 8.3. The layout appears in Print Preview

Those images really give us a clear idea of the practical differences between the on-

screen and print displays. A standard letter or A4 sheet of paper is reasonably nar­

row, so by the time the print display has accounted for the menu, only half of the

page width is left for the display of the recipe text. This may mean that long recipes

need to be printed on two pages, rather than one.

271 Accessibility and Alternative Devices

Traditionally, sites offer print versions of documents that they expect users to print.

However, this approach requires the maintenance of more than one version of the

document—and users have to be savvy enough to find and click the Print button on

the page, rather than simply printing the page using the browser’s Print button. With

the CSS method, the print style sheet will automatically come into play when visitors

use their browser’s print functionality.

Let’s step through the process of developing the print style sheet, and linking it to

your pages.

Linking a Print Style Sheet
Open your existing main style sheet and save it as print.css so that it becomes your

print style sheet. Link this style sheet to your document with the print media type,

like so:

<link rel="stylesheet" type="text/css" href="print.css"

 media="print" />

Creating the Print Styles
If you’ve saved your existing style sheet as print.css, you can use it to decide what

needs to be changed in order to create the print style sheet.

In my layout, the navigation is contained within a div; the section in the style sheet

for that element looks like this:

main.css (excerpt)

#navigation {
 width: 200px;
 font: 90% Arial, Helvetica, sans-serif;
 position: absolute;
 top: 41px;
 left: 0;
}

The first thing we want to do is hide the navigation, as it’s useless in the print version

of the document. To do this, we replace the properties in the above section of the

style sheet with display: none:

The CSS Anthology272

print.css (excerpt)

#navigation {
 display: none;
}

We can now remove any navigation rules that apply to elements within the navig­

ation element.

We can also make the content area wider, so that it takes up all the available space

on the page. Find the section for the content element in your style sheet:

main.css (excerpt)

#content {
 margin-left: 260px;
 margin-right: 60px;
}

We can change the left margin to a smaller value, as we no longer need to leave

space for the navigation. It’s also a good idea to switch from pixel measurements (a

screen unit) to points (a print unit), as we discussed in “Should I use pixels, points,

ems, or something else to set font sizes?” in Chapter 2:

print.css (excerpt)

#content {
 margin-left: 20pt;
 margin-right: 30pt;
}

If we check the document in Print Preview, as shown in Figure 8.4, or print it via

the browser, we’ll find that the navigation has disappeared, and the content now

fills the space much more effectively.

273Accessibility and Alternative Devices

Figure 8.4. The page printing more cleanly after we remove the navigation

The line at the top of Figure 8.4 is the banner’s bottom border. We can hide the

banner just as we hid the navigation. First, we must find the section for banner in

the style sheet:

main.css (excerpt)

#banner {
 height: 40px;

The CSS Anthology274

background-color: #711515;

 border-bottom: 1px solid #ED9F9F;

}

Once again, we set the banner to display: none and delete the remaining rules

associated with this ID:

print.css (excerpt)

#banner {
 display: none;
}

Finally, we can format the text. For print purposes, I normally make any colored

text grayscale, unless it’s important that the text stays colored. Let’s use print-friendly

points to size the text, so that our print style sheet renders font sizes reliably across

different systems.

Additionally, you might like to consider using a serif font for your printed text, as

serif fonts are generally considered easier to read on paper. Here are those changes:

print.css (excerpt)

#content p, #content li {
 font: 12pt/20pt "Times New Roman", Times, serif;
}
#content p {
 margin-left: 20pt;
}
#content h1, #content h2 {
 font: 16pt Georgia, "Times New Roman", Times, serif;
 color: #4b4b4b;
 background-color: transparent;
}
#content h2 {
 font: 14pt Georgia, "Times New Roman", Times, serif;
 padding-bottom: 2pt;
 border-bottom: 1pt dotted #cccccc;
}

275Accessibility and Alternative Devices

The much plainer, but more readable print layout is shown in its final form in Fig­

ure 8.5.

Figure 8.5. Using Print Preview to view the page affected by the completed style sheet

The CSS Anthology276

Print Style Sheets and Table Layouts

Print style sheets are easy to implement on CSS layouts, but you can also create

effective print style sheets for table-based layouts, particularly if you use CSS to

set the widths of table cells. You can then hide cells that contain navigation just

as we hid the navigation div in the above CSS layout.

How do I add alternative style sheets
to my site?
Some modern browsers allow the user to view a list of the style sheets attached to

a document, and select the one they want to use to view the site. This facility can

be very helpful to people who struggle to read text if its contrast with the page is

low, or need a very large text size, for example.

Solution
Link your alternative style sheet with rel="alternative stylesheet", and give

it a descriptive title. The title will display in the browser’s menu, so using a title

that’s descriptive, such as “high contrast” or “large text,” is most helpful for users.

You should also give your default style sheet a title to differentiate it from the al­

ternative style sheet:

alternative-stylesheets.html (excerpt)

<link rel="stylesheet" type="text/css" href="main.css"
 title="default" />

<link rel="stylesheet" type="text/css" href="print.css"
 media="print" />

<link rel="alternative stylesheet" type="text/css"
 href="largetext.css" title="large text" />

largetext.css

body, html {
 margin: 0;
 padding: 0;
font-size: 140%;

}

277Accessibility and Alternative Devices

#navigation {

width: 280px;

 font: 90% Arial, Helvetica, sans-serif;

 position: absolute;

 top: 41px;

 left: 0;

}

#navigation ul {

 list-style: none;

 margin: 0;

 padding: 0;

 border: none;

}

#navigation li {

 border-bottom: 1px solid #ED9F9F;

 margin: 0;

}

#navigation li a:link, #navigation li a:visited {

 display: block;

 padding: 5px 5px 5px 0.5em;

 border-left: 12px solid #711515;

 border-right: 1px solid #711515;

 color: #ffffff;

 background-color: #b51032;

 text-decoration: none;

}

#navigation li a:hover {

 color: #ffffff;

 background-color: #711515;

}

#content {

margin-left: 320px;

 margin-right: 60px;

}

#banner {

 height: 40px;

 background-color: #711515;

 border-bottom: 1px solid #ED9F9F;

 text-align: right;

 padding-right: 20px;

 margin-top: 0;

}

#banner ul {

 margin: 0;

The CSS Anthology278

padding: 0;

}

#banner li {

 display: inline;

}

#banner a:link, #banner a:visited {

 font: 80% Arial, Helvetica, sans-serif;

 color: #ffffff;

 background-color: transparent;

}

#content p, #content li {

 font: 80%/1.6em Arial, Helvetica, sans-serif;

}

#content p {

 margin-left: 1.5em;

}

#content h1, #content h2 {

 font: 140% Georgia, "Times New Roman", Times, serif;

 color: #B51032;

 background-color: transparent;

}

#content h2 {

 font: 120% Georgia, "Times New Roman", Times, serif;

 padding-bottom: 3px;

 border-bottom: 1px dotted #ED9F9F;

}

In Figure 8.6, you can see how the page displays when the user selects the alternative

style sheet from Firefox’s View menu.

279Accessibility and Alternative Devices

Figure 8.6. Switching to the large text style sheet in Firefox

Discussion
Utilizing this browser functionality is easy, and allows you to add valuable features

for users with a minimum of effort. Typically, it takes very little time to create a

style sheet that displays large fonts or has a high-contrast color scheme. Simply

save your existing style sheet and tweak the fonts, colors, and layout as required.

Unfortunately, browser support for this feature is still limited—it isn’t provided at

all in Internet Explorer. However, users who find this functionality beneficial may

choose a browser specifically because it gives them access to these features. In the

next solution, we’ll look at a way to mimic this functionality in browsers that don’t

offer it as standard.

The CSS Anthology280

Look How Thoughtful I Am!

As very few sites utilize this feature at present, it would be a good idea to let your

users know that you offer alternative style sheets. Perhaps include the information

on a separate page that explains how to use the site, and is linked clearly from

the homepage.

Zoom Layouts
A step on from simply creating a large-print style sheet is the concept of the zoom

layout. Popularized by Joe Clark, the zoom layout uses CSS to refactor the page into

a single-column layout with high-contrast colors.9 This is most useful for visitors

who use the browser’s zoom feature in Opera or Internet Explorer, or use software

that magnifies the screen to make reading easier. When a design is magnified in this

way, the sidebars often move off the side of the viewport, resulting in a page that

contains only essential content.

Zoom layouts can make things easier for visually impaired users by enlarging the

font size and displaying the text in a light color on a dark background—a combination

that’s easier for many users to read. A style sheet that created a zoom layout for the

design we’ve been working on throughout this chapter might contain the following

rules, and display in the browser as shown in Figure 8.7:

zoom.css

body, html {
 margin: 1em 2em 2em 2em;
 padding: 0;
 font-size: 140%;
 background-color: #333;
 color: #fff;
}

#navigation ul {
 list-style: none;
 margin: 0;
 padding: 0;
 border: none;

9 http://joeclark.org/access/webaccess/zoom/

http://joeclark.org/access/webaccess/zoom/
http://joeclark.org/access/webaccess/zoom/

281 Accessibility and Alternative Devices

}

#navigation li {

 float: left;

 width: 20%;

}

#navigation li a:link, #navigation li a:visited {

 color: #ff0;

}

#navigation li a:hover {

 text-decoration: none;

}

#content {

 padding: 1em 0 0 0;

 clear: left;

}

#content p, #content li {

 line-height: 1.6em;

}

#content h1, #content h2 {

 font: 140% Georgia, "Times New Roman", Times, serif;

 color: #fff;

 background-color: transparent;

}

#content h2 {

 font: 120% Georgia, "Times New Roman", Times, serif;

}

The CSS Anthology282

Figure 8.7. A zoom layout style sheet

How do I make a style sheet switcher?
The above solution for alternative style sheets is all very well for those who use a

browser that supports the functionality, but what about everyone else? Internet

Explorer has the largest user base and it doesn’t support alternative style sheets at

all! How can we empower users of this and other browsers to select the style sheet

that’s most appropriate to their needs?

Solution
Add a JavaScript style switcher to your page to enable users to select their preferred

style sheet:

alternative-stylesheets-js.html (excerpt)

<link rel="stylesheet" type="text/css" href="main.css"
 title="default" />

<link rel="stylesheet" type="text/css" href="print.css"

283Accessibility and Alternative Devices

media="print" />

<link rel="alternative stylesheet" type="text/css"

 href="largetext.css" title="large text" />

<script language="javascript" type="text/javascript"

 src="switcher.js"></script>

</head>

<body>

<div id="banner">

<ul id="styleswitch">

 <a href="javascript:;"

 onclick="setActiveStyleSheet('default'); return false;"

 >Default Style

 <a href="javascript:;"

 onclick="setActiveStyleSheet('large text'); return false;"

 >Large Text

</div>

switcher.js

/*
Paul Sowden's JavaScript switcher as detailed on:
http://www.alistapart.com/articles/alternate/
*/

function setActiveStyleSheet(title) {
 var i, a, main;
 for(i=0; (a = document.getElementsByTagName("link")[i]); i++) {
 if(a.getAttribute("rel").indexOf("style") != -1 &&

 a.getAttribute("title")) {
 a.disabled = true;
 if(a.getAttribute("title") == title) a.disabled = false;

 }
 }
}

function getActiveStyleSheet() {
 var i, a;
 for(i=0; (a = document.getElementsByTagName("link")[i]); i++) {
 if(a.getAttribute("rel").indexOf("style") != -1 &&

 a.getAttribute("title") && !a.disabled)
 return a.getAttribute("title");

 }
 return null;

The CSS Anthology284

}

function getPreferredStyleSheet() {

 var i, a;

 for(i=0; (a = document.getElementsByTagName("link")[i]); i++) {

 if(a.getAttribute("rel").indexOf("style") != -1

 && a.getAttribute("rel").indexOf("alt") == -1

 && a.getAttribute("title")

) return a.getAttribute("title");

 }

 return null;

}

function createCookie(name,value,days) {

 if (days) {

 var date = new Date();

 date.setTime(date.getTime()+(days*24*60*60*1000));

 var expires = "; expires="+date.toGMTString();

 }

 else expires = "";

 document.cookie = name+"="+value+expires+"; path=/";

}

function readCookie(name) {

 var nameEQ = name + "=";

 var ca = document.cookie.split(';');

 for(var i=0;i < ca.length;i++) {

 var c = ca[i];

 while (c.charAt(0)==' ') c = c.substring(1,c.length);

 if (c.indexOf(nameEQ) == 0)

 return c.substring(nameEQ.length,c.length);

 }

 return null;

}

window.onload = function(e) {

 var cookie = readCookie("style");

 var title = cookie ? cookie : getPreferredStyleSheet();

 setActiveStyleSheet(title);

}

window.onunload = function(e) {

 var title = getActiveStyleSheet();

 createCookie("style", title, 365);

285Accessibility and Alternative Devices

}

var cookie = readCookie("style");

var title = cookie ? cookie : getPreferredStyleSheet();

setActiveStyleSheet(title);

The new style selection links appear in the top right-hand corner in Figure 8.8.

Figure 8.8. Changing the style sheet with JavaScript

Discussion
Adding a JavaScript style switcher to your site gives all users with JavaScript support

the ability to choose the style sheet that best suits their needs.

This solution makes use of JavaScript functions from an A List Apart article entitled,

“Alternative Style: Working With Alternate Style Sheets.”10 After you save the

10 http://www.alistapart.com/articles/alternate/

http://www.alistapart.com/articles/alternate/
http://www.alistapart.com/articles/alternate/

The CSS Anthology286

functions to your site as switcher.js, all you need to do is link in the file, and add

links or buttons to call the JavaScript:

alternative-stylesheets-js.html (excerpt)

<script language="javascript" type="text/javascript"
 src="switcher.js"></script>

alternative-stylesheets-js.html (excerpt)

 <ul id="styleswitch">
 <a href="javascript:;"

 onclick="setActiveStyleSheet('default'); return false;"
 >Default Style

 <a href="javascript:;"
 onclick="setActiveStyleSheet('large text'); return false;"

 >Large Text

The setActiveStyleSheet function selects the style sheet to be applied. By calling

it with the title of the desired style sheet, we can allow users to select style sheets

from within the browser. As such, this technique can be used in conjunction with

that described in “How do I add alternative style sheets to my site?”. Visitors who

are able to change style sheets using their browser can still do so; others can use

the JavaScript style switcher.

You can also use this technique to change a site’s color scheme, and even its layout,

provided you used CSS to position the page elements.

Server-side Solutions

It’s also possible to allow users to change your site’s style sheet by writing out the

link to the selected style sheet using server-side code, such as PHP. Examples of

the methods you can use to achieve this are linked to from the css-discuss Wiki.11

11 http://css-discuss.incutio.com/?page=StyleSwitching

http://css-discuss.incutio.com/?page=StyleSwitching
http:switcher.js
http://css-discuss.incutio.com/?page=StyleSwitching

287Accessibility and Alternative Devices

How do I use alternative style sheets
without duplicating code?
In the examples we’ve seen so far in this chapter, we created our alternative style

sheet by changing very few properties within the main style sheet. Do we actually

need to create a whole new version of the style sheet as an alternative, or is it possible

to alter only those styles that need to be changed?

Solution
The answer to this question is to create multiple style sheets: a base style sheet for

the properties that never change, a default style sheet that contains the properties

that will change, and a style sheet that includes the alternative versions of those

properties:

alternative-stylesheets-js2.html (excerpt)

<link rel="stylesheet" type="text/css" href="main2.css" />
<link rel="stylesheet" type="text/css" href="defaulttext.css"

 title="default" />
<link rel="stylesheet" type="text/css" href="print.css"

 media="print" />
<link rel="alternative stylesheet" type="text/css"

 href="largetext2.css" title="large text" />

main2.css

body, html {
 margin: 0;
 padding: 0;
}
#navigation {
 font: 90% Arial, Helvetica, sans-serif;
 position: absolute;
 left: 0;
 top: 41px;
}
#navigation ul {
 list-style: none;
 margin: 0;
 padding: 0;

The CSS Anthology288

border: none;

}

#navigation li {

 border-bottom: 1px solid #ED9F9F;

 margin: 0;

}

#navigation li a:link, #navigation li a:visited {

 display: block;

 padding: 5px 5px 5px 0.5em;

 border-left: 12px solid #711515;

 border-right: 1px solid #711515;

 background-color: #B51032;

 color: #FFFFFF;

 text-decoration: none;

}

#navigation li a:hover {

 background-color: #711515;

 color: #FFFFFF;

}

#banner {

 background-color: #711515;

 border-bottom: 1px solid #ED9F9F;

 text-align: right;

 padding-right: 20px;

 margin-top: 0;

}

#banner ul {

 margin: 0;

}

#banner li {

 display: inline;

}

#banner a:link, #banner a:visited {

 font: 80% Arial, Helvetica, sans-serif;

 color: #ffffff;

 background-color: transparent;

}

#content p, #content li {

 font: 80%/1.6em Arial, Helvetica, sans-serif;

}

#content p {

 margin-left: 1.5em;

}

#content h1, #content h2 {

289Accessibility and Alternative Devices

font: 140% Georgia, "Times New Roman", Times, serif;

 color: #B51032;

 background-color: transparent;

}

#content h2 {

 font: 120% Georgia, "Times New Roman", Times, serif;

 padding-bottom: 3px;

 border-bottom: 1px dotted #ED9F9F;

}

defaulttext.css

#navigation {
 width: 200px;
}
#content {
 margin-left: 260px;
 margin-right: 60px;
}
#banner {
 height: 40px;
}

largetext2.css

body, html {
 font-size: 1.4em;
}
#navigation {
 width: 280px;
}
#content {
 margin-left: 320px;
 margin-right: 60px;
}
#banner {
 height: 60px;
}

The CSS Anthology290

Discussion
To create the largefonts.css file that I used in “How do I add alternative style sheets

to my site?” and “How do I make a style sheet switcher?”, I changed very few of the

properties that were in the original style sheet. I changed the base font size:

main.css (excerpt)

body, html {
 margin: 0;
 padding: 0;
}

largetext.css (excerpt)

body, html {
 margin: 0;
 padding: 0;
font-size: 1.4em;

}

I also tweaked the layout slightly to make room for much larger text. In particular,

I altered the banner, content, and navigation elements:

main.css (excerpt)

#navigation {
width: 200px;

 font: 90% Arial, Helvetica, sans-serif;
 position: absolute;
top: 41px;

 left: 0;
}
#content {
margin-left: 260px;
margin-right: 60px;

}

#banner {
height: 40px;

 background-color: #711515;
 border-bottom: 1px solid #ED9F9F;
 text-align: right;

291 Accessibility and Alternative Devices

padding-right: 20px;

 margin-top: 0;

}

largetext.css (excerpt)

#navigation {
width: 280px;

 font: 90% Arial, Helvetica, sans-serif;
 position: absolute;
top: 61px;

 left: 0;
}
#content {
margin-left: 320px;
margin-right: 60px;

}
#banner {
height: 60px;

 background-color: #711515;
 border-bottom: 1px solid #ED9F9F;
 text-align: right;
 padding-right: 20px;
}

To avoid making a copy of the entire style sheet in order to create the largetext.css

file, we can remove from the main style sheet those properties that we know we’ll

need to swap. We’ll place them in a new style sheet that determines the default font

size; our large-text style sheet need contain only the altered version of those prop­

erties.

Similarly, if you’re using this method to change your site’s color scheme, you can

put all the properties that relate to color into separate style sheets, and swap only

those. This way, you avoid having to maintain several different versions of what is,

essentially, the same style sheet.

The CSS Anthology292

Flexible Layouts Mean Simpler Style Sheets

If your layout is a flexible one in which you’ve avoided setting elements in pixel

widths, you may be able to get away with simply altering the base font size to effect

a change in text size. The example above addresses a design that does have some

fixed-width elements, however, as most designers are likely to have to deal with

containers of a fixed width at some stage in their careers.

Summary
In this chapter, we’ve covered some of the ways in which the use of style sheets

can make your site more accessible to a wider range of users. By starting out with

an accessible document structure we’re already assisting those who need to use a

screen reader to read out the content of the site, and by providing alternative style

sheets we can help users with other accessibility needs to customize their experience,

which makes the site easier to use.

Chapter9
CSS Positioning and Layout
Tables or CSS? Few questions generate more heated debate within the web design

and development community. But, whether you believe that the use of tables for

layout will immediately send you to web design hell to be beaten forever with a

red-hot (standards-compliant) poker, or you hold the more flexible view that,

sometimes, the minimal use of tables for layout can be the best way to accomplish

particular tasks, CSS positioning skills are a necessity for every web designer who

wants to stay up to date.

This chapter will introduce the basics of CSS layout, and explore useful tricks and

techniques that you can use to create unique and beautiful sites. These are the es­

sential building blocks—starting points for your creativity. If you work through the

chapter from beginning to end, you’ll start by gaining a grasp of some of the funda­

mentals that you’ll need to know to be able to create workable CSS layouts. The

chapter then progresses to more detailed layout examples, so if you’re already

comfortable with the basics, simply dip into these solutions to find the specific

technique you need.

The CSS Anthology294

How do I decide when to use a class and
when to use an ID?
At first glance, classes and IDs seem to be used in much the same way: you can assign

CSS properties to both classes and IDs, and apply them to change the way (X)HTML

elements look. But, in which circumstances are classes best applied? And what

about IDs?

Solution
The most important rule, where classes and IDs are concerned, is that an ID must

be only used once in a document, as it uniquely identifies the element to which it

is applied. Once you have assigned an ID to an element, you cannot use that ID

again within that document.

Classes, on the other hand, may be used as many times as you like within the same

document. Therefore, if you have on a page a feature that you wish to repeat, a class

is the ideal choice.

You can apply both a class and an ID to any given element. For example, you might

apply a class to all text input fields on a page; if you want to be able to address those

fields using JavaScript, each field will need a separate ID, too. However, no styles

need be assigned to that ID.

I tend to use IDs for the main, structural, positioned elements of the page, so I often

end up with IDs such as header, content, nav, and footer. Here’s an example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head>

<title>Absolute positioning</title>

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

<link rel="stylesheet" type="text/css" href="position2.css" />

</head>

<body>

 <div id="header">

 </div>

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

295CSS Positioning and Layout

<div id="content">

 <p>Main page content here</p>

 </div>

 <div id="nav">

 </div>

</body>

</html>

Can I make an inline element display as if
it were block-level, and vice-versa?
Sometimes, we need to cause the browser to treat HTML elements differently than

it would treat them by default.

Solution
In Figure 9.1, you can see that we’ve forced a div element to display as an inline

element, and a link to display as a block.

Figure 9.1. Displaying the block-level element inline, while the inline element displays as a block

The CSS Anthology296

Here’s the markup that achieves this effect:

inline-block.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Inline and block level elements</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<style type="text/css">
#one {
 background-color: #CCCCCC;
 color: #000000;
 border: 2px solid #AAAAAA;
 padding: 2px 6px 2px 6px;
}
#two {
 background-color: #CCCCCC;
 color: #000000;
 border: 2px solid #AAAAAA;
 padding: 2px 6px 2px 6px;
 display: inline;
}
a {
 background-color: #ACACAC;
 color: #FFFFFF;
 text-decoration: none;
 padding: 1px 2px 1px 2px;

}
a.block {
 display: block;
}
</style>
</head>
<body>
<div id="one">A div is a block level element.</div>
<p>It is possible to display a div or any other block level
 element as an inline element.</p>
<div id="two">This div is displaying as an inline element.</div>
<p>This paragraph contains a <a href="http://www.sitepoint.com/"

 >link that displays as an inline element.</p>

297CSS Positioning and Layout

<p>This paragraph contains a <a class="block"

href="http://www.sitepoint.com/">link that displays as a

block element.</p>

</body>

</html>

Discussion
Block-level elements are distinguished from inline elements in that they may contain

inline elements as well as other block-level elements. They’re also formatted differ­

ently than inline elements—block-level elements occupy a rectangular area of the

page, spanning the entire width of the page by default, whereas inline elements

flow along lines of text, and wrap to fit inside the blocks that contain them. HTML

elements that are treated as block-level by default include headings (h1, h2, h3, …

), paragraphs (p), lists (ul, ol), and various containers (div, blockquote).

In the example above, we see a div that displays as normal. As it’s a block-level

element, it takes up the full width of the parent element, which, in this case, is the

body. If it were contained within another div, or a table cell, it would stretch only

to the width of that element.

If we don’t want the div to behave in this way, we can set it to display inline by

applying this CSS property:

display: inline;

We can cause an inline element to display as if it were a block-level element in the

same way. In the above example, note that the a element displays as an inline ele­

ment by default. We often want it to display as a block—for example, when we’re

creating a navigation barusing CSS. To achieve this, we set the display property

of the element to block. In the example above, this causes the gray box that contains

the linked text to expand to the full width of the screen.

The CSS Anthology298

How do margins and padding work in CSS?

What’s the difference between the margin and padding properties, and how do they

affect elements?

Solution
The margin properties add space to the outside of an element. You can set margins

individually:

margin-top: 1em;

margin-right: 2em;

margin-bottom: 0.5em;

margin-left: 3em;

You can also set margins using a shorthand property:

margin: 1em 2em 0.5em 3em;

If all the margins are to be equal, simply use a rule like this:

margin: 1em;

This rule applies a 1em margin to all sides of the element.

Figure 9.2 shows what a block-level element looks like when we add margins to it.

The code for this page is as follows:

margin.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Margins</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<style type="text/css">
p {
 border: 2px solid #AAAAAA;

299CSS Positioning and Layout

background-color: #EEEEEE;

}

p.margintest {

 margin: 40px;

}

</style>

</head>

<body>

<p>This paragraph should be displayed in the default style of …</p>

<p>This is another paragraph that has the default browser …</p>

<p class="margintest">This paragraph has a 40-pixel

margin …</p>

</body>

</html>

Figure 9.2. Applying margins to an element with CSS

The padding properties add space inside the element—between its borders and its

content. You can set padding individually for the top, right, bottom, and left sides

of an element:

padding-top: 1em;

padding-right: 1.5em;

padding-bottom: 0.5em;

padding-left: 2em;

You can also apply padding using this shorthand property:

The CSS Anthology300

padding: 1em 1.5em 0.5em 2em;

As with margins, if the padding is to be equal all the way around an element, you

can simply use a rule like this:

padding: 1em;

Figure 9.3, which results from the following code, shows what a block looks like

with padding applied. Compare it to Figure 9.2 to see the differences between

margins and padding.

padding.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Padding</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<style type="text/css">
p {
 border: 2px solid #AAAAAA;
 background-color: #EEEEEE;
}
p.paddingtest {
 padding: 40px;
}
</style>
</head>
<body>
<p>This paragraph should be displayed in the default style …</p>
<p>This is another paragraph that has the default browser …</p>
<p class="paddingtest">This paragraph has 40 pixels of …</p>
</body>
</html>

Discussion
The above solution demonstrates the basics of margins and padding. As we’ve seen,

the margin properties create space between the element to which they are applied

301 CSS Positioning and Layout

and the surrounding elements, while padding creates space inside the element to

which it is applied. Figure 9.4 illustrates this point.

Figure 9.3. Applying padding to an element in CSS

Figure 9.4. Applying margins, padding, and borders

If you’re applying margins and padding to a fixed-width element, they will be added

to the specified width to produce the total width for that element. So, if your element

has a width of 400 pixels, and you add 40 pixels’ worth of padding on all sides,

you’ll make the element 480 pixels wide. Add 20 pixels of margins to that, and the

element will occupy a width of 520 pixels (a visible width of 480 pixels with 20

The CSS Anthology302

pixels of spacing on either side). If you have a very precise layout, remember to

calculate your element sizes carefully, including any added margins and padding.

In Internet Explorer 5 and 5.5, padding (and borders) are interpreted as being in­

cluded within the specified width of the element; in these browsers, the element

just described would remain 400 pixels in width with the padding included; adding

margins would reduce the visible width of the element. One workaround for this

peculiarity is to apply padding to a parent element, rather than adding a margin to

the element in question. Alternatively, you could use the box model hack described

in Chapter 7.

How do I make text wrap around an image
without using the HTML align attribute?
With HTML, it’s possible to wrap text around an image using the align attribute.

This attribute is now deprecated, but there is a CSS equivalent!

Solution
Use the CSS float property to float an image to the left or right, as shown in Fig­

ure 9.5.

Here’s the code for this page:

float.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Float</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<style type="text/css">
.featureimage {
float: left;
width: 319px;

}
</style>
</head>

303CSS Positioning and Layout

<body>

<h1>Chinese-style stuffed peppers</h1>

<img src="peppers1.jpg" width="319" height="255" alt="peppers"

 class="featureimage" />

<p>These stuffed peppers are lovely as a starter …</p>

</body>

</html>

Figure 9.5. Floating an image to the left using the float property

Discussion
The float property takes the element out of the document flow and “floats” it

against the edge of the block-level element that contains it. Other block-level ele­

ments will then ignore the floated element and render as if it isn’t there. Inline

elements such as content, however, will make space for the floated element, which

is why we can use float to cause our text to wrap around an image.

As we can see clearly in Figure 9.5, the text bumps right up against the side of the

image. Figure 9.6 shows that, if we add a border to that image, the text bumps right

up against the side of the border.

The CSS Anthology304

Figure 9.6. Text rendering against an image to which borders are applied

To create space between our image and the text, we need to add a margin to the

image. Since the image is aligned against the left-hand margin, we’ll probably only

want to add right and bottom margins to move the text away from the image slightly:

float2.html (excerpt)

.featureimage {
 float: left;
 width: 319px;
 border: 2px solid #000000;
 margin-right: 20px;
 margin-bottom: 6px;
}

Figure 9.7 shows the resulting display, with extra space around the floated image.

305CSS Positioning and Layout

Figure 9.7. Adding right and bottom margins to an image to improve the display

How do I stop the next element moving up
when I use float?
Floating an image or other element causes it to be ignored by block-level elements,

although the text and inline images contained in those elements will appear to wrap

around the floated element. How can you force elements on your page to display

below the floated element?

Solution
The CSS property clear allows you to make a given element display beneath any

floated elements as if they had not been floated in the first place. In this example,

we apply this property with a value of both to the first paragraph that follows the

list of ingredients:

float-clear.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

The CSS Anthology306

<head>

<title>float and clear</title>

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

<style type="text/css">

.featureimg {

 float: right;

 width: 319px;

 margin-left: 20px;

 margin-bottom: 6px;

 border:1px solid #000;

}

.clear {

 clear: both;

}

</style>

</head>

<body>

<h1>Chinese-style stuffed peppers</h1>

<img src="peppers1.jpg" width="319" height="213" alt="peppers"

 class="featureimg" />

 1 tablespoon of oil

 1 crushed garlic clove

 Peeled and finely chopped fresh ginger root

 250g minced pork, beef or Quorn

 1 chopped spring onion

 1 chopped celery stick

 Grated rind of 1 lemon

 Finely chopped red chilli (optional)

 4 large green peppers

<p class="clear">These stuffed peppers are lovely as a …</p>

⋮
</body>

</html>

As shown in Figure 9.8, where we’ve floated the image to the right of the page, this

markup causes the paragraph to be pushed down so that it begins below the floated

image.

307 CSS Positioning and Layout

Figure 9.8. The first paragraph displaying clear of the floated image

Discussion
The float property takes an element out of the flow of the document: the block-

level elements that appear after it will simply ignore the floated element. This effect

can be seen more clearly if we apply a border to the elements in our document, as

illustrated in Figure 9.9, which adds a two-pixel border to the ul and p elements

in the page.

The floated image basically sits on top of the block elements. The text within those

elements wraps around the image, but the elements themselves will ignore the fact

that the floated element is there. This means that, in our example, if the height of

the ingredients list is less than that of the image, the paragraph after the list of in­

gredients will wrap around the image, as Figure 9.10 shows.

The CSS Anthology308

Figure 9.9. Applying a two-pixel border to the ul and p elements

Figure 9.10. Using the clear property to clear the paragraph from the float

309CSS Positioning and Layout

To get the paragraph to begin at a point below that at which the image finishes, we

can use the clear property:

float-clear.html (excerpt)

.clear {
 clear: both;
}

We apply this CSS class to the first <p> tag after the ingredients list:

float-clear.html (excerpt)

<p class="clear">These stuffed peppers are lovely as a starter, or
 as a side dish for a Chinese meal. They also go down well as
 part of a buffet and even children seem to like them.</p>

If we leave the borders in place and reload the document as in Figure 9.10, we can

see that the paragraph begins below the pepper image; its border does not run behind

the image at all.

The clear property can also take values of left or right, which are useful if you

want to clear an element only from left or right floats, respectively. The value you

are most likely to use, though, is both. Be aware that both float and clear can

trigger bugs, particularly in Internet Explorer. We discussed one of these bugs in

Chapter 7.

How do I align a site’s logo and slogan to
the left and right without using a table?
If you’ve ever used tables for layout, you’ll know how easy it is to create the type

of effect shown in Figure 9.11 with a two-column table. This method allows you to

align the contents of the left-hand table cell to the left, and those of the right-hand

cell to the right. Fortunately, the same end result is achievable using CSS.

The CSS Anthology310

Figure 9.11. Aligning the logo and slogan left and right, respectively, using CSS

Solution
We can use float to create this type of layout:

slogan-align.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Stage & Screen - theatre and film reviews</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="slogan-align.css"

 />
</head>
<body>
<div id="header">
 <img src="stage-logo.gif" width="187" height="29"

 alt="Stage & Screen" class="logo" />
 theatre and film reviews
</div>
</body>
</html>

slogan-align.css

body {
 margin: 0;
 padding: 0;

311 CSS Positioning and Layout

background-color: #FFFFFF;

 color: #000000;

 font-family: Arial, Helvetica, sans-serif;

 border-top: 2px solid #2A4F6F;

}

#header {

 border-top: 1px solid #778899;

 border-bottom: 1px dotted #B2BCC6;

 height: 3em;

}

#header .slogan {

 font: 120% Georgia, "Times New Roman", Times, serif;

 color: #778899;

 background-color: transparent;

 float: right;

 width: 300px;

 text-align:right;

 margin-right: 2em;

 margin-top: 0.5em;

}

#header .logo {

 float: left;

 width: 187px;

 margin-left: 1.5em;

 margin-top: 0.5em;

}

Discussion
The float property allows us to align the elements in our header with either side

of the viewport. Before adding the float, our elements will display next to each

other, as in Figure 9.12.

The elements appear side by side because the HTML that marks them up dictates

nothing about their positions on the page. Thus, they appear one after the other.

Let’s take a look at the markup that controls the slogan’s alignment:

The CSS Anthology312

Figure 9.12. The elements displaying at their default positions

slogan-align.html (excerpt)

<div id="header">
 <img src="stage-logo.gif" width="187" height="29"

 alt="Stage & Screen" class="logo" />
 theatre and film reviews
</div>

By floating the class logo to the left and slogan to the right, we can move the ele­

ments to the left and right of the display. I’ve also added a rule to align the text in

our slogan to the right—without this line, the text that comprises our slogan will

still be left-aligned within the span element that we floated to the right! Figure 9.13

shows the result.

Figure 9.13. Applying float to make the elements display as desired

To provide some space around the elements, let’s add a margin to the top and left

of the logo, and the top and right of the slogan:

313 CSS Positioning and Layout

slogan-align.css (excerpt)

#header .slogan {
 font: 120% Georgia, "Times New Roman", Times, serif;
 color: #778899;
 background-color: transparent;
 float: right;
 width: 300px;
 text-align: right;
 margin-right: 2em;
 margin-top: 0.5em;
}
#header .logo {
 float: left;
 width: 187px;
 margin-left: 1.5em;
 margin-top: 0.5em;
}

One thing to be aware of when you’re using this technique is that, once you’ve

floated all the elements within a container, that container will no longer be “held

open” by anything, so it will collapse to zero height. To demonstrate this point, I’ve

added a large border to my header in Figure 9.14. Here, the elements have not been

floated, so the header surrounds the elements.

Figure 9.14. Showing the size of the header when elements are not floated

The CSS Anthology314

Once I float the elements right and left, the header loses its height, because the

elements have been taken out of the document flow. The thick red line at the top

of Figure 9.15 is actually the header’s border.

Figure 9.15. Floating the elements causing the header to collapse

To avoid this problem, you can set an explicit height for the block:

slogan-align.css (excerpt)

#header {
 border-top: 1px solid #778899;
 border-bottom: 1px dotted #B2BCC6;
height: 3em;

}

The block now occupies the desired area of the page, as Figure 9.16 shows.

315 CSS Positioning and Layout

Figure 9.16. The page displaying normally after a height is set for the header <div>

When you’re setting heights in this kind of situation, keep in mind the potential

impact that user-altered text sizes may have on your layout. Using ems is a handy

way to set heights, as they will expand relative to the text size, so they can accom­

modate larger text sizes without running the risk of having the floated element burst

out of the box.

How do I set an item’s position on the page
using CSS?
It’s possible to use CSS to specify exactly where on the page an element should

display.

Solution
With CSS, you can place an element on the page by positioning it from the top,

right, bottom, or left using absolute positioning. The two blocks shown in Figure 9.17

have been placed with absolute positioning.

The CSS Anthology316

Figure 9.17. Placing boxes using absolute positioning

The code for this page is as follows:

position.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Absolute positioning</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="position.css" />
</head>
<body>
<div id="box1">This is box one. It is positioned 10 pixels from
 the top and 20 pixels from the left of the viewport.</div>
<div id="box2">This is box two. It is positioned 2em from the
 bottom and 2em from the right of the viewport.</div>
</body>
</html>

position.css

#box1 {
 position: absolute;
 top: 10px;
 left: 20px;

317 CSS Positioning and Layout

width: 100px;

 background-color: #B0C4DE;

 border: 2px solid #34537D

}

#box2 {

 position: absolute;

 bottom: 2em;

 right: 2em;

 width: 100px;

 background-color: #FFFAFA;

 border: 2px solid #CD5C5C;

}

Discussion
Setting an element’s position property to absolute removes it completely from

the document flow. As an example, if I add several paragraphs of text to the example

document shown above, the two boxes will sit on top of the content, as shown in

Figure 9.18.

Figure 9.18. The content ignoring the positioned boxes

The CSS Anthology318

In the markup that I used to produce this display, the paragraphs follow the abso­

lutely positioned divs; however, because the divs have been removed from the

document flow, the paragraphs begin at the top-left corner just as they would if the

boxes did not exist.

As we’ll see in “How do I create a liquid, two-column layout with the menu on the

left, and the content on the right?”, we can create space for absolutely positioned

areas by placing them within the margins or padding of other elements. What may

not be obvious from this example, though, is that elements need not be positioned

relative to the edges of the document (although this approach is quite common).

Elements can also be positioned within other elements with the same degree of

precision.

Figure 9.19 depicts a layout that contains two boxes. In this example, box two is

nested inside box one. Because box one is also positioned absolutely, the absolute

positioning of box two sets its position relative to the edges of box one. Here’s the

markup that produces the display:

position2.html (excerpt)

<div id="box1">This is box one. It is positioned 100 pixels from
 the top and 100 pixels from the left of the viewport.
 <div id="box2">This is box two. It is positioned 2em from the
 bottom and 2em from the right of the parent element - box one.

 </div>
</div>

position2.css

#box1 {
 position: absolute;
 top: 100px;
 left: 100px;
 width: 400px;
 background-color: #B0C4DE;
 border: 2px solid #34537D
}
#box2 {
 position: absolute;
 bottom: 2em;
 right: 2em;

319 CSS Positioning and Layout

width: 150px;

 background-color: #FFFAFA;

 border: 2px solid #CD5C5C;

}

Figure 9.19. Positioning box two within box one

To demonstrate this point further, let’s add a height of 300 pixels to the CSS for

box1:

position3.css (excerpt)

#box1 {
 position: absolute;
 top: 100px;
 left: 100px;
 width: 400px;
height: 300px;

 background-color: #B0C4DE;
 border: 2px solid #34537D
}

You’ll now see box two render entirely within box one, as shown in Figure 9.20,

rather than appearing to stick out the top of it. This display results because box two

is positioned with respect to the bottom and right-hand edges of box one.

The CSS Anthology320

Figure 9.20. Box two rendering within box one

Positioning Starts with the Parent

It’s important to note that the parent element (box1) must be positioned using

CSS in order for the child element (box2) to base its position on that parent.

If the parent element’s position property is not set, then the child’s position

will be based on the edges of the document—not those of the parent element.

How do I center a block on the page?
One common page layout uses a fixed-width, centered box to contain the page

content, as does the one shown in Figure 9.21. How can we center this box on the

page using CSS?

321 CSS Positioning and Layout

Figure 9.21. Centering a fixed-width box using CSS

Solution
You can use CSS to center a fixed-width box by setting its left and right margins to

auto:

center.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Centered Box</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="center.css" />
</head>
<body>
<div id="content">
 <p>This box is 630 pixels wide and centered in the document.</p>
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing …</p>
</div>
</body>
</html>

The CSS Anthology322

center.css

body {
 background-color: #CCD3D9;
 color: #000000;
 text-align: center;
}
#content {
 width: 630px;
margin-left: auto;

 margin-right: auto;
 border: 2px solid #A6B2BC;
 background-color: #FFFFFF;
 color: #000000;
 padding: 0 20px 0 20px;
 text-align: left;
}

Discussion
This technique allows you to center boxes easily, and is ideal if you need to center

a content block on a page.

When we set both the left and right margins to auto, we’re asking the browser to

calculate equal values for each margin, thereby centering the box. In “How do I

create a liquid, two-column layout with the menu on the left, and the content on

the right?”, we’ll see how to create a layout inside a container that has been centered

in this way.

The example code provided here contains additional CSS to work around a bug in

Internet Explorer 5.x that prevents the margins from centering content. By setting

text-align: center on the body, then setting it to text-align: left on the content

div, we’re able to circumvent the problem, allowing the layout to center in these

browsers as well.

323CSS Positioning and Layout

How do I create a liquid, two-column layout
with the menu on the left, and the
content on the right?
Web page layouts like that shown in Figure 9.22, which display a menu on the left

and a large content area to the right, are extremely common. Let’s discover how to

build this layout using CSS.

Figure 9.22. Building a liquid two-column layout using CSS

Solution
Here’s the markup and CSS that produces the display shown in Figure 9.22:

2col.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Stage & Screen - theatre and film reviews</title>
<meta http-equiv="content-type"

The CSS Anthology324

content="text/html; charset=utf-8" />

<link rel="stylesheet" type="text/css" href="2col.css" />

</head>

<body>

<div id="header">

 <img src="stage-logo.gif" width="187" height="29"

 alt="Stage & Screen" class="logo" />

 theatre and film reviews

</div>

<div id="content">

 <h1>Welcome to Stage & Screen</h1>

 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing …</p>

</div>

<div id="nav">

 Play Reviews

 Film Reviews

 Post a Review

 About this Site

 Contact Us

 <h2>Latest Reviews</h2>

 The Passion of The Christ

 Finding Nemo

 Stomp

 The Lion King 3

</div>

</body>

</html>

2col.css

body {
 margin: 0;
 padding: 0;
 background-color: #FFFFFF;
 color: #000000;
 font-family: Arial, Helvetica, sans-serif;
 border-top: 2px solid #2A4F6F;
}
#header {
 border-top: 1px solid #778899;

325CSS Positioning and Layout

border-bottom: 1px dotted #B2BCC6;

 height:3em;

}

#header .slogan {

 font: 120% Georgia, "Times New Roman", Times, serif;

 color: #778899;

 background-color: transparent;

 float: right;

 width: 300px;

 text-align:right;

 margin-right: 2em;

 margin-top: 0.5em;

}

#header .logo {

 float: left;

 width: 187px;

 margin-left: 1.5em;

 margin-top: 0.5em;

}

#nav {

 position: absolute;

 top: 5em;

 left: 1em;

 width: 14em;

}

#nav ul {

 list-style: none;

 margin-left: 1em;

 padding-left: 0;

}

#nav li {

 font-size: 80%;

 border-bottom: 1px dotted #B2BCC6;

 margin-bottom: 0.3em;

}

#nav a:link, #nav a:visited {

 text-decoration: none;

 color: #2A4F6F;

 background-color: transparent;

}

#nav a:hover {

 color: #778899;

}

The CSS Anthology326

#nav h2 {

 font: 110% Georgia, "Times New Roman", Times, serif;

 color: #2A4F6F;

 background-color: transparent;

 border-bottom: 1px dotted #cccccc;

}

#content {

 margin-left: 16em;

 margin-right: 2em;

}

h1 {

 font: 150% Georgia, "Times New Roman", Times, serif;

}

#content p {

 font-size: 80%;

 line-height: 1.6em;

 padding-left: 1.2em;

}

Discussion
Our starting point for this layout is the header that we created in “How do I align

a site’s logo and slogan to the left and right without using a table?”. We’ve added

to that layout some content, which resides within a div whose ID is content. The

navigation for the page comprises two unordered lists that are contained in a div

with the ID nav. As you’d expect, without any positioning applied, these blocks

will display below the heading in the order in which they appear in the document

(as depicted in Figure 9.23).

327CSS Positioning and Layout

Figure 9.23. The content and navigation displaying without positioning information

At this point, the CSS looks like this:

2col.css (excerpt)

body {
 margin: 0;
 padding: 0;
 background-color: #FFFFFF;
 color: #000000;

The CSS Anthology328

font-family: Arial, Helvetica, sans-serif;

 border-top: 2px solid #2A4F6F;

}

#header {

 border-top: 1px solid #778899;

 border-bottom: 1px dotted #B2BCC6;

 height:3em;

}

#header .slogan {

 font: 120% Georgia, "Times New Roman", Times, serif;

 color: #778899;

 background-color: transparent;

 float: right;

 width: 300px;

 text-align:right;

 margin-right: 2em;

 margin-top: 0.5em;

}

#header .logo {

 float: left;

 width: 187px;

 margin-left: 1.5em;

 margin-top: 0.5em;

}

Sizing and Positioning the Menu
Let’s use absolute positioning to position the menu just under the heading bar, and

give it an appropriate width:

2col.css (excerpt)

#nav {
 position: absolute;
 top: 5em;
 left: 1em;
 width: 14em;
}

As you can see in Figure 9.24, this code causes the menu to appear over the text

content, as the absolute positioning we’ve applied has removed it from the flow of

the document.

329CSS Positioning and Layout

Figure 9.24. Positioning the menu absolutely

Positioning the Content
As we’re aiming to maintain a liquid layout, we don’t want to assign a fixed width

to the content and, in fact, we don’t need to. The problem with the content is that

it appears in the space required by the menu. To solve this problem, we can simply

apply a large left-hand margin to the content area to allow space for the menu. The

results are shown in Figure 9.25:

#content {

 margin-left: 16em;

 margin-right: 2em;

}

The CSS Anthology330

Figure 9.25. Adding margins to the content

Now that all the elements are laid out neatly, we can work on the styling of indi­

vidual elements, using CSS to create the layout we saw back in Figure 9.22. The

completed CSS style sheet is given at the start of this solution.

Ems for Positioning Text Layouts

I used ems to position the elements in this layout. The em unit will resize as the

text resizes, which should help us avoid any problems with overlapping text if

users resize fonts in their browsers. For layouts that are predominantly text-based,

the em is an excellent choice for setting the widths of boxes and margins. However,

care should be taken if your design involves many images. Images do not resize

with text, so you may prefer to use pixels to position elements in cases where you

need precise control over the elements’ locations on the page.

331 CSS Positioning and Layout

Can I reverse this layout and put the menu
on the right?
Can the technique presented in “How do I create a liquid, two-column layout with

the menu on the left, and the content on the right?” be used to create a layout in

which the menu is positioned on the right?

Solution
Yes, exactly the same technique can be used! You’ll need to position your menu

from the top and right, and give the content area a large right margin so that the

menu has sufficient space in which to display. The result is shown in Figure 9.26.

Figure 9.26. Building a two-column layout so that the menu appears on the right

The CSS Anthology332

Discussion
Positioning the menu on the right doesn’t require us to change the markup of the

original document at all. All we need to do is change the positioning properties for

nav, and the margins on content:

2col-reverse.css

#nav {
 position: absolute;
 top: 5em;
 right: 1em;
 width: 14em;
}
#content {
 margin-left: 2em;
 margin-right: 16em;
}

The advantage of using absolute positioning can be seen clearly here. It doesn’t

matter where our menu appears in the markup: the use of absolute positioning

means it will be removed from the document flow and we can place it wherever

we like on the page. This can be of great benefit for accessibility purposes, as it allows

us to place some of the less-important items (such as lists of links to other sites,

advertising, and so on) right at the end of the document code. This way, those who

employ screen readers to use the site won’t have to hear these unnecessary items

read aloud each time they access a page. Yet you, as the designer, are still able to

position these items wherever you like for visual effect.

How do I create a fixed-width, centered,
two-column layout?
You can use CSS to create a two-column layout that’s contained within a centered

div on the page.

Solution
Creating a two-column, fixed-width, centered layout is slightly trickier than a fixed-

width, left-aligned, or liquid layout, as you don’t have an absolute reference point

333CSS Positioning and Layout

from the left- or right-hand side of the viewport that you can use to position the

elements horizontally. However, there are a couple of different ways in which we

can deal with this complication in order to achieve the kind of layout shown in

Figure 9.27.

Figure 9.27. The fixed-width, centered layout

Whichever layout method you choose, the HTML is the same:

2col-fixedwidth.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Recipe for Success</title>
<link href="2col-fixedwidth.css" rel="stylesheet" type="text/css" />
<meta http-equiv="content-type"

The CSS Anthology334

content="text/html; charset=utf-8" />

</head>

<body>

<div id="wrapper">

 <div id="header">

 <h1>Recipe for Success</h1>

 </div>

 <div id="content">

 <p>The Recipe for Success web site...</p>

 </div>

 <div id="navigation">

 <ul id="mainnav">

 Recipes

 Contact Us

 Articles

 Buy Online

 </div>

 <div id="footer">Copyright © 1999 - 2007 Recipe for

success</div>

</div>

</body>

</html>

The first and simplest option to achieve this layout is to place the content and

navigation elements within the centered block, using absolute and relative position­

ing, respectively:

2col-fixedwidth.css

body {
 margin: 0;
 padding: 0;
 font-family: Verdana, Arial, Helvetica, sans-serif;
 background-color: #FFFFFF;
 text-align: center;
}
#wrapper {
 position: relative;
 text-align: left;
 width: 760px;
 margin-right: auto;
 margin-left: auto;

335CSS Positioning and Layout

border-bottom: 1px solid #ececec;

}

#header {

 background-image: url(recipe-header.jpg);

 background-repeat: no-repeat;

 height: 150px;

 position: relative;

 border-bottom: 1px solid #ececec;

}

#header h1 {

 margin: 0;

 padding: 0;

 font-weight: normal;

 color: #cb352d;

 font-size: 190%;

 position: absolute;

 bottom: 4px;

 right: 0;

}

#content {

 margin-left: 230px;

 padding: 0 10px 0 0;

}

#content p {

 font-size: 80%;

 line-height: 1.8em;

}

#navigation {

 position: absolute;

 top: 150px;

 left: 0;

 width: 180px;

}

#navigation ul {

 list-style: none;

 margin: 1em 0 0 0;

 padding: 0;

 border: none;

The CSS Anthology336

}

#navigation li {

 font-size: 90%;

}

#navigation a:link, #navigation a:visited {

 color: #cb352d;

 background-color: transparent;

 display: block;

 border-bottom: 1px solid #999;

 padding: 1em 0 0.2em 0;

 text-decoration: none;

}

#navigation a:hover {

 color: #999;

}

#footer {

 font-size: 80%;

 padding-top: 1em;

 text-align: right;

 color: #999;

 background-color: transparent;

}

An alternative approach is to simply float the navigation and content against the

left and right sides of the centered block, respectively. Floating the elements will

give you more flexibility if you need to add other elements to the layout, such as a

footer. If you float the left and right columns, you can apply clear: both to the

footer to place it beneath the two columns, regardless of their heights. This dynamic

placement of the footer within the document flow is not possible if the columns are

absolutely positioned:

2col-fixedwidth-float.css

body {
 margin: 0;
 padding: 0;
 font-family: Verdana, Arial, Helvetica, sans-serif;
 background-color: #FFFFFF;

337CSS Positioning and Layout

text-align: center;

}

#wrapper {

 position: relative;

 text-align: left;

 width: 760px;

 margin-right: auto;

 margin-left: auto;

}

#header {

 background-image: url(recipe-header.jpg);

 background-repeat: no-repeat;

 height: 150px;

 position: relative;

 border-bottom: 1px solid #ececec;

}

#header h1 {

 margin: 0;

 padding: 0;

 font-weight: normal;

 color: #cb352d;

 font-size: 190%;

 position:absolute;

 bottom: 4px;

 right: 0;

}

#content {

 float: right;

 width: 520px;

 padding: 0 10px 0 0;

}

#content p {

 font-size: 80%;

 line-height: 1.8em;

}

#navigation {

 float: left;

 width: 180px;

The CSS Anthology338

}

#navigation ul {

 list-style: none;

 margin: 1em 0 0 0;

 padding: 0;

 border: none;

}

#navigation li {

 font-size: 90%;

}

#navigation a:link, #navigation a:visited {

 color: #cb352d;

 background-color: transparent;

 display: block;

 border-bottom: 1px solid #999;

 padding: 1em 0 0.2em 0;

 text-decoration: none;

}

#navigation a:hover {

 color: #999;

}

#footer {

 clear: both;

 font-size: 80%;

 padding-top: 1em;

 text-align: right;

 color: #999;

 background-color: transparent;

}

Discussion
For the purposes of this discussion, we’ll ignore purely aesthetic style properties

such as borders, colors, and fonts, so that we can concentrate on the layout.

Both versions of this layout begin with a centered div, similar to the layouts we

worked with in “How do I center a block on the page?”. This div is given the ID

wrapper:

339CSS Positioning and Layout

2col-fixedwidth.css or 2col-fixedwidth-float.css (excerpt)

body {
 margin: 0;
 padding: 0;
 text-align: center;
⋮

}

#wrapper {
 text-align: left;
 width: 760px;
 margin-right: auto;
 margin-left: auto;
⋮

}

The results of applying these styles are shown in Figure 9.28.

Figure 9.28. Centering the content on the page

The CSS Anthology340

Now, in “How do I create a liquid, two-column layout with the menu on the left,

and the content on the right?” we saw that we could use absolute positioning to

control the navigation’s location, and apply enough margin to the content of the

page so that the two blocks would not overlap. The only difference in this layout

is that we need to position the navigation within the centered wrapper block, so we

can’t give it an absolute position on the page.

Instead of using absolute, you can set an element’s position property to relative,

which doesn’t take the element out of the document flow the way absolute position­

ing does; instead, it lets you shift the element from the starting point of its default

position on the page. If you don’t provide coordinates to which you want to shift

the element, it will actually stay exactly where the browser would normally position

it. Unlike an element that doesn’t have a position value specified, however, a rel­

atively positioned element will provide a new positioning context for any absolutely

positioned elements within it.

In plain English, an element with position: absolute that’s contained within an

element with position: relative will base its position on the edges of that parent

element, not on the edges of the browser window. This is exactly what we need to

use to position the navigation within the centered block in this example.

The first step is to set the position property of wrapper to relative:

2col-fixedwidth.css (excerpt)

#wrapper {
 position: relative;
 text-align: left;
 width: 760px;
 margin-right: auto;
 margin-left: auto;
⋮

}

We then use absolute positioning to set the location of the navigation block:

2col-fixedwidth.css (excerpt)

#navigation {
position: absolute;

341 CSS Positioning and Layout

top: 150px;

 left: 0;

 width: 180px;

}

Finally, we add a margin to the main content of the page to make space for the newly

positioned navigation area:

2col-fixedwidth.css (excerpt)

#content {
margin-left: 230px;

 padding: 0 10px 0 0;
}

As long as the content of the page occupies more vertical space than does the nav­

igation, this layout will work just fine. Unfortunately, since the navigation block

is absolutely positioned, it doesn’t affect the height of the wrapper block, so if the

content is shorter than the navigation, the wrapper block will not be tall enough to

contain the navigation. We can see this effect by adding a two-pixel, red border to

the wrapper, and adding text to the sidebar so that it becomes longer than the content.

In Figure 9.29, you can clearly see that the content in the sidebar extends below the

wrapper element.

The CSS Anthology342

Figure 9.29. The content in the sidebar extending below the bottom of the wrapper block

The alternative method of using floated blocks to achieve our design goals is more

complex, but it overcomes the limitation I just mentioned, enabling us to position

a footer below the columns no matter which column is the longest. First, we float

the navigation block left and the content block right:

2col-fixedwidth-float.css (excerpt)

#content {
float: right;

 width: 520px;
 padding: 0 10px 0 0;
}

343CSS Positioning and Layout

#navigation {

float: left;

 width: 180px;

}

As you can see in Figure 9.30, the border of the wrapper block now cuts through

the page content. This occurs because we floated most of the block’s contents, re­

moving them from the document flow. The only element inside wrapper that’s still

within the document flow is the footer block, which can be seen in the bottom-left

corner of the wrapper block, to which it has been pushed by the floated blocks.

Figure 9.30. Floating the navigation left and the content right

If we set the clear property of the footer block to both, the footer will drop down

below both of the floated blocks, thereby forcing wrapper to accommodate both the

The CSS Anthology344

navigation and the content—no matter which is taller. The page now renders as

shown in Figure 9.31.

2col-fixedwidth-float.css (excerpt)

#footer {
 clear: both;
⋮

}

Figure 9.31. The footer set to clear: both

How do I create a full-height column?
If you’ve tried to add a background to a side column like the one shown in the last

example in “How do I create a fixed-width, centered, two-column layout?”, you

345CSS Positioning and Layout

may have discovered that you can’t get the column to extend the full height of the

taller column next to it, which makes your background look a little strange. For

example, applying a background image to the navigation element will simply

display the background behind the navigation list, rather than stretching it down

the column to the end of the content, as shown in Figure 9.32.

Figure 9.32. The grey background displaying only behind the navigation content

Solution
The solution to this problem is to apply the background image to a page element

that does extend the full height of the longer column, but to have it display at the

same width as our navigation, in order to make it look as though the background is

on the navigation column. In this case, we can apply the background image to

wrapper, as Figure 9.33 illustrates.

The CSS Anthology346

2col-fixedwidth-float.css (excerpt)

#wrapper {
 position: relative;
 text-align: left;
 width: 760px;
 margin-right: auto;
 margin-left: auto;
background-image: url(nav-bg.jpg);

 background-repeat:no-repeat;
 border-bottom: 1px solid #ececec;
}

Figure 9.33. The background appearing to be attached to the navigation column

347CSS Positioning and Layout

Discussion
This simple technique can be used to great effect in your layouts. In this example,

I chose to apply the image to the wrapper block, as I want the background to extend

right down to the end of the content, but you could use this technique to have the

background stop above the footer, or after a certain section of content: simply apply

the background to an element that contains the section of content you want.

Creating Solid Backgrounds

I used a very tall image here, because I was adding a gradient. If you want to display

a solid color behind your navigation, use an image that’s the same width as the

navigation, but only a few pixels tall, and repeat it vertically.

How do I add a drop shadow to my layout?
Drop shadows are commonly used on layouts—particularly on content boxes

within a layout. Let’s add a drop shadow to a fixed width layout such as the one

we worked with in the section called “How do I create a full-height column?”.

Solution
We can add a drop shadow to this layout using two images: one for the background,

and one to create the shadow effect at the bottom of the layout. Figure 9.34 shows

the effect we’re working to create.

The CSS Anthology348

Figure 9.34. A drop shadow

To create this effect, we need to add some markup that will provide us with hooks

to which we can add the two images.

The first image, which I’ve named shadow-bg.jpg and can be seen in Figure 9.35, is

a background image that we’ll apply to the div with an ID of wrapper. This image

is the left and right drop shadow, and it repeats down the page.

Figure 9.35. The files used to create the drop shadow effect

349CSS Positioning and Layout

I’ve increased the width of my wrapper block by 20 pixels. I’ve done this because

I want the content area to stay the same width, but I need to allow room for the

shadow on either side of the content:

2col-fixedwidth-shadow.css (excerpt)

#wrapper {
 position: relative;
 text-align: left;
width: 780px;

 margin-right: auto;
 margin-left: auto;
background-image: url(shadow-bg.jpg);

 background-repeat: repeat-y;
}

Next, I wrap an additional div, which I’ve named main, around the content, navig­

ation, and footer elements, just inside the wrapper block:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

<head>

<title>Recipe for Success</title>

<link href="2col-fixedwidth-shadow.css" rel="stylesheet"

type="text/css" />

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

</head>

<body>

<div id="wrapper">

<div id="main">

 <div id="header">

 <h1>Recipe for Success</h1>

 </div>

 <div id="content">

 <p>The Recipe for Success web site...</p>

 </div>

 <div id="navigation">

 <ul id="mainnav">

 Recipes

 Contact Us

 Articles

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The CSS Anthology350

Buy Online

 </div>

 <div id="footer">Copyright © 1999 - 2007 Recipe for

success</div>

</div>

</div>

</body>

</html>

I add to this div the shadow-bottom.jpg image that forms the bottom of our drop

shadow. I position it to the bottom-left of the element, and set its

background-repeat value to no-repeat. I also add some padding to this div to

push the page contents away from the drop shadow:

2col-fixedwidth-shadow.css (excerpt)

#main {
 padding: 0 20px 20px 20px;
 background-image: url(shadow-bottom.jpg);
background-repeat:no-repeat;
 background-position: bottom left;
}

Voila—our drop shadow is complete!

How do I create a three-column CSS layout?
Many designs fall into a three-column model. As demonstrated in Figure 9.36, you

might need a column for navigation, one for content, and one for additional items

such as advertising or highlighted content on the site. Let’s see how we can accom­

plish this type of layout using CSS.

351 CSS Positioning and Layout

Figure 9.36. A three-column layout developed in CSS

Solution
A three-column, liquid layout is easily created using a simple technique similar to

the one we used to build the two-column layout in “How do I create a liquid, two-

column layout with the menu on the left, and the content on the right?”:

3col.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Recipe for Success</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="3col.css" />
</head>
<body>
<div id="content">
 <h1>Recipe for Success</h1>
 <p> … </p>

The CSS Anthology352

</div>

<div id="side1">

 <form method="post" action="" id="searchform">

 <h3><label for="keys">Search the Recipes</label></h3>

 <div>

 <input type="text" name="keys" id="keys" class="txt" />

 <input type="submit" name="Submit" value="Submit" />

 </div>

 </form>

 About Us

 Recipes

 Articles

 Buy Online

 Contact Us

</div>

<div id="side2">

 <h3>Please Visit our Sponsors</h3>

 <div class="adbox"><p>Lorem ipsum dolor sit amet, … </p></div>

 <div class="adbox"><p>Sed mattis, orci eu porta … </p></div>

 <div class="adbox"><p>Quisque mauris nunc, mattis … </p></div>

</div>

</body>

</html>

3col.css

body {
 margin: 0;
 padding: 0;
 background-image: url(tomato_bg.jpg);
 background-repeat: no-repeat;
 background-color: #FFFFFF;
}
p {
 font: 80%/1.8em Verdana, Geneva, Arial, Helvetica, sans-serif;
 padding-top: 0;
 margin-top: 0;
}
form {
 margin: 0;
 padding: 0;

353CSS Positioning and Layout

}

#content {

 margin: 66px 260px 0px 240px;

 padding: 10px;

}

#content h1 {

 text-align: right;

 padding-right: 20px;

 font: 150% Georgia, "Times New Roman", Times, serif;

 color: #901602;

}

#side1 {

 position: absolute;

 width: 200px;

 top: 30px;

 left: 10px;

 padding: 70px 10px 10px 10px;

}

#side2 {

 position: absolute;

 width: 220px;

 top: 30px;

 right: 10px;

 padding: 70px 10px 10px 10px;

 border-left: 1px dotted #cccccc;

 background-image: url(sm-tomato.jpg);

 background-position: top right;

 background-repeat: no-repeat;

}

#side2 h3 {

 font: 110% Georgia, "Times New Roman", Times, serif;

 margin: 0;

 padding-bottom: 4px;

}

.adbox {

 padding: 2px 4px 2px 6px;

 margin: 0 0 10px 0;

 border: 1px dotted #B1B1B1;

 background-color: #F4F4F4;

}

#side1 h3 {

 font: 110% Georgia, "Times New Roman", Times, serif;

 color: #621313;

 background-color: transparent;

The CSS Anthology354

margin: 0;

 padding-bottom: 4px;

}

#side1 .txt {

 width: 184px;

 background-color: #FCF5F5;

 border: 1px inset #901602;

}

#side1 ul {

 list-style: none;

 margin-left: 0;

 padding-left: 0;

 width: 184px;

}

#side1 li {

 font: 80% Verdana, Geneva, Arial, Helvetica, sans-serif;

 margin-bottom: 0.3em;

 border-bottom: 1px solid #E7AFAF;

}

#side1 a:link, #side1 a:visited {

 text-decoration: none;

 color: #901602;

 background-color: transparent;

}

#side1 a:hover {

 color: #621313;

}

Discussion
This layout uses a simple technique. We start with the unstyled XHTML document

shown in Figure 9.37, which has three divs: one with ID content, one with ID

side1, and one with ID side2.

355CSS Positioning and Layout

Figure 9.37. The unstyled XHTML document

We create the three columns using the following CSS fragments. We place both the

left- and right-hand columns with absolute positioning—side1 is positioned from

the left edge of the page, side2 from the right. We also add some significant top

padding to these columns to make room for background images that will act as

headings:

3col.css (excerpt)

#side1 {
 position: absolute;
 width: 200px;
 top: 30px;
 left: 10px;
 padding: 70px 10px 10px 10px;
}

3col.css (excerpt)

#side2 {
 position: absolute;

The CSS Anthology356

width: 220px;

 top: 30px;

 right: 10px;

 padding: 70px 10px 10px 10px;

⋮

}

The content block simply sits between the two absolutely positioned columns,

with margins applied to the content to give the columns the room they need:

3col.css (excerpt)

#content {
 margin: 66px 260px 0px 240px;
 padding: 10px;
}

Figure 9.38 shows what the page looks like with these initial positioning tasks

complete.

Figure 9.38. Three columns appearing with the initial CSS positioning

357CSS Positioning and Layout

With our three columns in place, we can simply style the individual elements as

required for the design in question. I’ve used background images of tomatoes on

the body and on side2, as you can see in in Figure 9.36.

How do I add a footer to a liquid layout?
If you’ve experimented at all with absolute positioning, you may have begun to

suspect that an absolutely positioned layout will make it impossible to add a footer

that will always stay beneath all three columns, no matter which is the longest.

Well, you’d be right!

To add a footer to our three-column layout we’ll need to use a floated layout. A

floated, liquid layout presents an additional problem that we don’t have with a

floated, fixed-width layout. When we float an element in our layout, we need to

give it a width. Now, in a fixed-width layout we know what the actual width of

each column is, so we can float each column and give it a width. In a liquid layout

such as the one we saw in “How do I create a three-column CSS layout?”, we have

two columns whose widths we know (the sidebars), and one we don’t—the main

content area, which expands to fill the space.

Solution
In order to get round the problem of needing to have a flexible column in a floated

layout, we need to build a slightly more complex layout, using negative margins to

create space for a fixed-width column in a flexible content area. We’ll also need to

add some markup to our layout in order to give us some elements to float:

3col-alt.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Recipe for Success</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="3col-alt.css" />
</head>
<body>
<div id="wrapper">

The CSS Anthology358

<div id="content">

 <div id="side1">

 <form method="post" action="" id="searchform">

 <h3><label for="keys">Search the Recipes</label></h3>

 <div><input type="text" name="keys" id="keys" class="txt" />

 <input type="submit" name="Submit" value="Submit" />

 </div>

 </form>

 About Us

 Recipes

 Articles

 Buy Online

 Contact Us

 </div>

 <div id="main">

 <h1>Recipe for Success</h1>

 <p>...</p>

 </div>

 </div>

</div>

<div id="side2">

 <h3>Please Visit our Sponsors</h3>

 <div class="adbox"><p>Lorem ipsum dolor sit amet...</p></div>

 <div class="adbox"><p>Lorem ipsum dolor sit amet...</p></div>

 <div class="adbox"><p>Lorem ipsum dolor sit amet...</p></div>

</div>

<div id="footer">Copyright © 1999 - 2007 Recipe for

success</div>

</body>

</html>

Within our CSS, we give the new wrapper block a width of 100% and a negative

right margin of –230 pixels. This use of negative margins enables us to give the

sidebar a variable width that’s 230 pixels less than the width of the browser window.

359CSS Positioning and Layout

We can then float our sidebars into position, to the left and right of the content:

3col-alt.css (excerpt)

body {
 margin: 0;
 padding: 0;
}

#wrapper {
 width: 100%;
 float: left;
 margin-right: -230px;
 margin-top: 66px;
}

#content {
 margin-right: 220px;
}

#main {
 margin-left: 220px;
}

#side1 {
 width: 200px;
 float: left;
 padding: 0 10px 0 10px;
}
#side2 {
 width: 190px;
 padding: 80px 10px 0 10px;
 float: right;

}

#footer {
 clear: both;
 border-top: 10px solid #cecece;
}

As you can see in Figure 9.39, this CSS positions the columns where we need them,

and our new footer falls neatly below the three columns. This solution can also be

used for a two-column layout; you can change the order of columns by floating

The CSS Anthology360

elements to the right instead of the left. With a little experimentation, you should

be able to get the layout to behave as you need it to, even if it seems a little counter-

intuitive at first!

Figure 9.39. The columns floated into place

How do I display a thumbnail gallery
without using a table?
If you need to display a collection of images—perhaps for a photo album—a table

may seem like the easiest way to go. However, the layout shown in Figure 9.40 was

achieved using CSS; it provides some significant benefits that tabled versions lack.

361 CSS Positioning and Layout

Figure 9.40. Building an image gallery of thumbnails using CSS

Solution
This solution uses a simple list for the album images, and positions them using

CSS:

gallery.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>CSS photo album</title>
<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
<link href="gallery.css" rel="stylesheet" type="text/css" />
</head>
<body>
<ul id="albumlist">

The CSS Anthology362

<img src="thumb1.jpg" alt="Candle" width="240"

height="160" />A light in the darkness

 <img src="thumb2.jpg" alt="Pete Ryder" width="240"

 height="160" />Pete Ryder

 <img src="thumb3.jpg" alt="La Grande Bouffe" width="240"

height="160" />La Grande Bouffe

 <img src="thumb4.jpg" alt="sculpture" width="240"

height="160" />Sculpture

 <img src="thumb5.jpg" alt="Duck stretching wings" width="240"

height="160" />Splashing about

 <img src="thumb6.jpg" alt="Duck" width="240" height="160"

/>Duck

 <img src="thumb7.jpg" alt="Red leaves" width="240"

height="160" />Red

 <img src="thumb8.jpg" alt="Autumn leaves" width="240"

height="160" />Autumn

</body>

</html>

gallery.css

body {
 background-color: #FFFFFF;
 color: #000000;
 margin: 0;
 padding: 0;
}
#albumlist {
 list-style-type: none;
}
#albumlist li {
 float: left;
 width: 240px;
 margin-right: 6px;
 margin-bottom: 10px;
 font: bold 0.8em Arial, Helvetica, sans-serif;
 color: #333333;
}
#albumlist img {
 display: block;
 border: 1px solid #333300;
}

363CSS Positioning and Layout

Discussion
Our starting point for this layout is the creation of an unordered list—within it,

we’ll store each image in a li element, along with an appropriate image caption.

Without the application of CSS, this list will display as shown in Figure 9.41:

gallery.html (excerpt)

<ul id="albumlist">
 <img src="thumb1.jpg" alt="Candle" width="240"

height="160" />A light in the darkness
 <img src="thumb2.jpg" alt="Pete Ryder" width="240"

 height="160" />Pete Ryder
 <img src="thumb3.jpg" alt="La Grande Bouffe" width="240"

height="160" />La Grande Bouffe
 <img src="thumb4.jpg" alt="sculpture" width="240"

height="160" />Sculpture
 <img src="thumb5.jpg" alt="Duck stretching wings" width="240"

height="160" />Splashing about
 <img src="thumb6.jpg" alt="Duck" width="240" height="160"

/>Duck
 <img src="thumb7.jpg" alt="Red leaves" width="240"

height="160" />Red
 <img src="thumb8.jpg" alt="Autumn leaves" width="240"

height="160" />Autumn

Note that I’ve applied an ID of albumlist to the list that contains the photos.

The CSS Anthology364

Figure 9.41. The unstyled list of images

To create the grid-style layout of the thumbnails, we’re going to position the images

by using the float property on the li elements that contain them. Add these rules

to your style sheet:

#albumlist {

 list-style-type: none;

}

#albumlist li {

 float: left;

 width:240px;

}

#albumlist img {

 display: block;

}

All we’re aiming to achieve with these rules is to remove the bullet points from the

list items, and float the images left, as shown in Figure 9.42. Also, by setting the

images to display as blocks, we force their captions to display below them.

365CSS Positioning and Layout

Your pictures should now have moved into position. If you resize the window,

you’ll see that they wrap to fill the available width. If the window becomes too

narrow to contain a given number of images side by side, the last image simply

drops down to start the next line.

Figure 9.42. The page display after the images are floated left

We now have our basic layout—let’s add to it to make it more attractive. For example,

we could insert some rules to create space between the images in the list, and specify

a nice font for the image captions:

gallery.css (excerpt)

#albumlist li {
 float: left;
 width:240px;
 margin-right: 6px;
 margin-bottom: 10px;
 font: bold 0.8em Arial, Helvetica, sans-serif;
 color: #333333;
}

The CSS Anthology366

We could also add borders to the images:

gallery.css (excerpt)

#albumlist img {
 border: 1px solid #333300;
}

The flexibility of this layout method makes it particularly handy when you’re pulling

your images from a database—you don’t have to calculate the number of images,

for example, so that you can build table cells on the fly as you create your page.

All the same, you might not always want to permit this wrapping effect to display.

You can stop unwanted wrapping by setting the width of the list tag, :

#albumlist {

 list-style-type: none;

 width: 600px;

}

This rule forcibly sets the width to which the images may wrap, producing the

display shown in Figure 9.43.

367CSS Positioning and Layout

Figure 9.43. The images ceasing to wrap after we set the width of the containing tag

How do I create boxes with rounded
corners?
There are a number of approaches you can use to create rounded corners on boxes.

Here, we’ll look at three different ways of achieving this effect.

Solution 1: The Mozilla border-radius Property
If this solution doesn’t have you forcibly converting all your friends to Mozilla,

nothing will! This solution, illustrated in Figure 9.44, works only in Mozilla-based

browsers, and currently uses a Mozilla extension to CSS. Here’s the markup and

CSS:

corners1.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">

The CSS Anthology368

<head>

<title>Rounded Corners</title>

<meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

<link rel="stylesheet" type="text/css" href="corners1.css" />

</head>

<body>

<div class="curvebox">

 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing … </p>

</div>

</body>

</html>

corners1.css

.curvebox {
 width: 250px;
 padding: 1em;
 background-color: #B0C4DE;
 color: #33527B;
 -moz-border-radius: 25px;
}

Figure 9.44. Rounded corners, Mozilla-style

This example doesn’t use a single image! The CSS property that creates those nicely

rounded corners on the box borders is:

369CSS Positioning and Layout

-moz-border-radius: 25px;

Remove this line from the CSS, as I’ve done in Figure 9.45, and you’ll see that the

box displays with the usual square corners (as it does in browsers other than those

that are Mozilla-based).

Figure 9.45. Removing -moz-border-radius: 25px; to have the box display as normal

The Mozilla-only -moz-border-radius property corresponds to the border-radius

property that will be part of the CSS3 recommendation when it’s finalized.1 Obvi­

ously, it’s currently only of use to visitors to your site who use Mozilla browsers,

so most designers will look to a different solution.

Solution 2: Images and Additional Markup
A solution that works in multiple browsers uses additional images and markup to

create the rounded effect. First, create the corner images using a graphics program.

You’ll need a small image for each corner of the box. The easiest way to create these

is to quarter a circle so that you end up with a set, as shown in Figure 9.46.

Figure 9.46. Rounded corner images

1 http://www.w3.org/TR/css3-border/#the-border-radius

http://www.w3.org/TR/css3-border/#the-border-radius
http://www.w3.org/TR/css3-border/#the-border-radius

The CSS Anthology370

The markup for this example is as follows. The top- and bottom-left images are in­

cluded in the document itself, within top and bottom divs:

corners2.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title>Rounded corners</title>
<meta http-equiv="Content-Type"

 content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="corners2.css" />
</head>
<body>
<div class="rndbox">
 <div class="rndtop"><img src="topleft.gif" alt="" width="30"

 height="30" /></div>
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing … </p>
 <div class="rndbottom"><img src="bottomleft.gif" alt=""

 width="30" height="30" /></div>
</div>
</body>
</html>

The top- and bottom-right images are included as background images in the CSS

for the divs, with the classes rndtop and rndbottom:

corners2.css (excerpt)

.rndbox {
 background: #C6D9EA;
 width: 300px;
 font: 0.8em Verdana, Arial, Helvetica, sans-serif;
 color: #000033;
}
.rndtop {
 background: url(topright.gif) no-repeat right top;
}
.rndbottom {
 background: url(bottomright.gif) no-repeat right top;
}
.rndbottom img {

371 CSS Positioning and Layout

display:block;

}

.rndbox p {

 margin: 0 0.4em 0 0.4em;

}

Together, the images, markup, and CSS create a curved box like the one shown in

Figure 9.47.

Figure 9.47. A curved box created using images

Solution 3: Using JavaScript
Adding markup and images to your code isn’t a particularly attractive option, espe­

cially if you have a lot of boxes that you want to have round corners. To get around

the problem, many people have come up with solutions that use JavaScript to add

the rounded corners to otherwise square boxes. The beauty of this solution is that

even if users don’t have JavaScript enabled, they see a perfectly usable site—it

merely lacks the additional style of the curved edges.

Various methods have been devised to achieve rounded corners using JavaScript,

but here we’ll look at just one—NiftyCube—as it’s very easy to drop into your code

and get started. The script is included in the code archive for this book, but if you’d

like the latest version, download NiftyCube from the NiftyCube web site, and unzip

the zip file.2 You’ll find lots of example pages in the zip archive, but all you need

2 http://www.html.it/articoli/niftycube/

http://www.html.it/articoli/niftycube/
http://www.html.it/articoli/niftycube/
http://www.html.it/articoli/niftycube/

The CSS Anthology372

to implement this effect in your own pages is the JavaScript file niftycube.js and the

CSS file niftyCorners.css. Copy these files into your site. Our starting point is a square-

cornered box created by the following markup:

corners3-start.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
 <title>Rounded Corners</title>
 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
 <link rel="stylesheet" type="text/css" href="corners3.css" />
</head>
<body>
 <div class="curvebox">
 <p>Lorem ipsum dolor...</p>
</div>

</body>
</html>

You have a reasonable amount of freedom in terms of the way you style your box,

with one exception—the padding inside your box must be specified in pixels. If

you use any other unit, such as ems, then your corners won’t render properly in In­

ternet Explorer. The result of our work is pictured in Figure 9.48.

corners3.css

.curvebox {
 width: 250px;
padding: 20px;

 background-color: #B0C4DE;
 color: #33527B;
}

373CSS Positioning and Layout

Figure 9.48. The square box

To add rounded corners to this box using NiftyCube, link the JavaScript file to the

head of your document, then write a simple function to tell the script that you wish

to round the corners of the class curvebox:

corners3.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
 <title>Rounded Corners</title>
 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />
 <link rel="stylesheet" type="text/css" href="corners3.css" />
<script type="text/javascript" src="niftycube.js"></script>
<script type="text/javascript">
window.onload=function(){
Nifty("div.curvebox");
}
</script>
</head>
<body>
 <div class="curvebox">
 <p>Lorem ipsum dolor...</p>
</div>

</body>
</html>

This markup produces the display shown in Figure 9.49.

The CSS Anthology374

Figure 9.49. Rounded corners without images or extra markup

Discussion
While numerous solutions are available to help you create rounded corners without

JavaScript, they all require you to insert additional markup, or ensure that your

markup is structured in a certain way.3 If you only have a few boxes whose corners

you want to round—perhaps a main layout container or a couple of larger boxes—the

additional images and markup won’t be a huge imposition. But if your layout in­

cludes many rounded corners, peppering your markup with extra divs and images

may be an extremely undesirable option. The JavaScript method allows cleaner

HTML code, but as with all JavaScript solutions, it doesn’t work when the user has

JavaScript turned off.

Personally, I feel that using JavaScript in this way—to plug the holes in CSS sup­

port—is legitimate. As long as you’ve checked that your layout remains clear and

easy to use without the rounded corners, you’re not going to prevent those without

JavaScript from using your site. If you do use this JavaScript solution on a project,

be sure to check the whole site with JavaScript turned off, to make sure that the

users still have a good experience on the site.

3 One attempt at generating rounded corners using semantic markup and no JavaScript is Spanky Corners

[http://tools.sitepoint.com/spanky/], created by SitePoint’s Alex Walker.

http://tools.sitepoint.com/spanky/
[http://tools.sitepoint.com/spanky/]

375CSS Positioning and Layout

Summary
This chapter should have given you some starting points and ideas for your own

layouts. By combining other solutions in this book, such as the innovative use of

navigation and images, with your own creativity, you should be able to come up

with myriad designs based on the layouts we’ve explored here. As with tables, most

CSS layouts are really just variations on a theme.

Once you have a grasp of the basics, and you’ve learned the rules, you’ll find that

you really are limited only by your imagination. For inspiration, and to see what

other designers are doing with CSS layouts, have a look at the CSS Zen Garden.4

4 http://www.csszengarden.com/

http://www.csszengarden.com/
http://www.csszengarden.com/

Index

Symbols
ID prefix, 8

* html hack (see star html hack)

A
<a> elements (see links)

About Debian Linux site, 218

absolute keyword font sizes, 19

absolute positioning, 315, 317

advantages, 332

three-column liquid layouts, 351, 355

two-column fixed-width layouts, 334,

340

two-column liquid layouts, 328

within other elements, 318, 340

access keys, 199–202

accessibility

(see also screen readers; text-only

devices)

absolute positioning and, 332

access keys, 201

advantages of CSS, 215

<blockquote> elements and, 45

designing in, 140

drop-down menus and, 134

<fieldset> and <legend> elements, 197

image text and, 76

pixel sizing and, 16

problems with tabular layouts, 135

reliance on color and, 179

tabular data, 137

testing in text-only browsers, 260

accesskey attribute, 201

accounts data spreadsheet, 136

:active pseudo-class, 27, 28, 126

align attribute alternatives, 302

alignment

of form fields, 189, 193, 194

of logos and slogan in headers, 309

of tabular data, 148

of text, 42, 43, 46

in two-column liquid layouts, 323,

331

alistapart.com site, 129, 285

alpha transparency and IE6, 237, 242

alt text, 262

alternating column colors, 157

alternating row colors, 150, 153, 205

alternative style sheets, 276–292

alerting users, 280

avoiding code duplication, 287–292

links to, 285

print style sheets, 265

style sheet switchers, 282

anchor elements (see links)

arrow key navigation, 261

attributes, HTML

(see also class attributes; ID attributes)

deprecated attributes, 56, 62, 302

for tabular data, 139

aural media type, 264, 265

author’s web site, 222, 251, 260

auto setting, margin properties, 321, 322

B
background colors

(see also highlighting)

The CSS Anthology378

changing, after user interaction, 153,

213

headings, 34

link styling and, 29

navigation menu example, 89

solid color for columns, 347

background images

IE6 transparency effect, 237

movement, rollover effects, 125

multiple image effect, 77

placing text onto, 75

positioning, 66

setting for document elements, 72

setting for web pages, 62

static, under scrolling content, 70

three-column liquid layouts, 355, 357

background properties, shorthand declar­

ations, 71

background-attachment property, 70

background-color property

alternating column colors, 158

alternating row colors, 151

highlighting using, 39, 149

mouseover color change, 154

navigation rollover effects, 95

Safari support, 179, 203

<select> elements, 203

validator warnings about, 258

background-image property, 64, 345

background-position property, 66, 68, 69

banners, alternative style sheets, 273,

290

beveled effects, 109

block-level elements

centering, 320

displaying links as, 95

distinguished from inline, 297

effect of adding margins, 298

effect of adding padding, 300

float property and, 115

forcing inline display, 295

forms as, 183

response to floated elements, 303, 307

specifying heights, 314

<blockquote> elements, 45

blogs, 171, 224

<body> elements

assigning IDs to, 117, 118

avoiding the background attribute, 62

multiple background image effects, 77

removing margins, 55

setting link colors, 10

Boodman, Aaron, 238

Boot Camp software, 219

border attribute, avoiding, 62, 141

border properties and navigation ‘but­

tons’, 107, 109

border property

applying to tables and cells, 141, 148

image gallery application, 366

indented appearance using, 142

inset borders, 182

removing borders, 62

border-bottom property, underlining, 35

border-collapse property

calendar application, 168

collapsing table cells, 89, 144, 148

‘editable table’ form, 210

border-radius property, 367, 369

borders

adding to images, 60, 303

box model bug in IE 5, 230

379The CSS Anthology

changing, on receiving focus, 213

‘editable table’ form, 211

IE 5.x interpretation of, 302

illustrating container collapse, 313

illustrating float property effects, 303,

307

list-based navigation menu, 95

border-style property, 143

box model hack, 230, 232, 245

box model, phantom box bug, 225

boxes, centering, 320

boxes, rounded corners, 367–374

braille media type, 263

Browser Cam testing service, 222, 223

browser defaults

display of <fieldset> and <legend>,

198

sans-serif fonts, 24

styling, 93, 176, 229

browser support

(see also device support)

alternative style sheets, 276, 278, 279

basing hacks on, 234

border-style property, 143

CSS support, 229, 259

cursor property values, 121

DOCTYPE switching, 247

drop-down menu technique, 129

font sizes, 18

:hover pseudo-class, 96, 154

import method, 226

<input> element borders, 212

list-style-type values, 51

text styling, 13

zoom layouts, 280

browser testing

importance, 216

Linux users, 220

Mac users, 219

Netscape 4, 227

screen reader testing, 262

testing in multiple browsers, 222

text-only browsers, 260

using mailing lists, 223

Windows users, 217

browser window resizing, 365, 366

browsers

(see also Internet Explorer; Mozilla;

Opera; Safari; text-only devices)

border underlining effects, 35

bugs in, Web sites listing, 249

coloring horizontal rules, 43

directing different styles to, 235

display of absolute keyword sizes, 19

downloading obscure browsers, 216

hiding CSS from particular, 230

inheritance problems, 6

keyboard shortcuts, 202

Konqueror, 216, 218, 221

legacy, basic style sheet, 226

Linux-specific browsers, 218

Lynx browser, 260

options for printing pages, 271

popular, tabulated, 216

print functionality, 271

rendering modes, 243

text size preferences, 16

validation using plugins, 257

browser-specific extensions, 367

bugs

(see also Internet Explorer)

The CSS Anthology380

bug fixes and hacks, 234

parser bug in Opera 5, 233

systematic approach to fixing, 215,

248

Web sites listing, 249

bulleted lists

per-item bullets, 52

removing bullets, 94, 105, 170, 364

styling, 49, 51

buttons

displaying as plain text, 184

Safari browser support limitations,

185

styling a Submit button, 180, 182

styling links to resemble, 106

C
calendar example, 161–171

capitalization, 47, 48

<caption> elements, 140, 149

calendar example, 166, 169

captioning (see images)

caption-side property, 140

cascading process, 8

Çelik, Tantek, 232

cells, table (see table cells)

cellspacing attribute, HTML, 144

centering

background-position default, 68

blocks of content, 320

text, 46

two-column layouts, 332

child element positioning, 320

Clark, Joe, 280

class attributes

adding borders selectively, 61

choice between IDs and, 167, 294

distinguishing different form fields,

180

dynamically applied classes, 155

‘editable table’ form, 210

linking IDs to, 117, 118

naming, 204

setting multiple link styles, 30

styling tables, 140, 153, 157, 167

tabbed navigation list items, 113

use of elements, 39

class selectors, 7

clear property

(see also float property)

footers and, 336, 343

positioning text below floated ele­

ments, 305, 309

possible values, 309

code duplication, 287

<col> elements, 157, 160

<colgroup> elements, 160

collapsing borders (see border-collapse

property)

collapsing containers, 313

colors

(see also background colors; contrast)

accessibility problems, 179

alternating column colors, 157

alternating row colors, 150, 205

changing, with style sheet switchers,

286

horizontal rules, 43

print styles and, 269, 274

section IDs within <body> elements,

118

separating changing information, 291

381 The CSS Anthology

simulating button depression, 109

zoom layouts and, 280

columns

alternating colors, 157

creating full-height, 344

comments, 55, 235

conditional comments, 236, 240

Compliance Mode rendering, 243, 246,

247

conditional comments, 236, 240

containers

collapsing when contents are floated,

313, 314

indenting rule, 44

setting borders within, 61

styling, for navigation menus, 93

treated as block-level elements, 297

content areas

centering, 320

drop shadow effect, 347

mouseover highlighting, 156

in two-column liquid layouts, 329

width adjustment for printing, 272

contrast, 276, 279, 280

Crossover Office emulator, 221

csant.info site, 260

.css file extension, 4

CSS Filters site, 234

CSS Pointers Group site, 249

CSS Test Suite for list-style-type, 51

CSS tutorial, 1–11

CSS2.1 media types, 263

CSS3 border-radius property, 369

CSS-Discuss site, 235, 249, 251, 286

csszengarden.com site, 78, 375

cursor positioning, 202

(see also mouseover effects)

in form fields, 187

cursor property, 119

D
database-driven applications, 162, 366

deprecated attributes, 56, 62, 302

depressed effect, button navigation, 109

descendant selectors, 9

device types, styling for, 263, 265

display property

displaying links as blocks, 95, 131

drop-down menu example, 131

hiding page sections, 271, 274

inline display of form elements, 183

 elements, 54, 103, 105

overriding defaults, 297

<div> elements

absolute positioning example, 318

class selectors, 30

drop shadow layout, 349

<fieldset> and <legend> compared to,

197

forcing inline display, 295, 297

form field layouts and, 193, 194

list based navigation menu, 93

positioning of nested, 318

two-column centered layout using,

338

DOCTYPE switching, 243

DOCTYPEs, 247

Compliance Mode enforcing, 247

rendering modes and, 243, 245

document flow

absolute positioning and, 317, 328

The CSS Anthology382

float property and, 194, 303, 307, 314,

343

inserting form elements, 184

relative positioning and, 340

Dreamweaver, Macromedia, 257

drop shadow effect, 347

drop-down menus, 126–134

alternating row colors, 205

varying background colors, 203

dual booting, 218–221

dynamic web pages

alternating row colors, 153

database-driven calendar, 162

image gallery application, 366

E
edgeofmyseat.com site, 222, 251, 260

‘editable table’ form, 205, 208, 211

Emacspeak screen reader, 265

empty element validation, 257

ems, font sizing in, 16, 315, 330

errors, validator, 256, 257

event markup, calendar application, 167,

170

evolt.org website, 216

exes, font sizing in, 18

F
fields (see form fields)

<fieldset> elements, 194, 197, 198

file extension .css, 4

filters (see hacks)

Fire Vox extension, 262

Firefox browser, 176, 198, 278

first letters, styling, 48

first lines, styling, 46

fixed-width elements

alternative style sheets and, 292

centering, 320

effect of adding margins, 301

in flexible content areas, 357

fixed-width layouts, 332

‘Flash of Unstyled Content’ bug, 229

flickering, Internet Explorer, 126

float property

alignment of logo and slogan, 310, 311

container collapse and, 313

‘disappearing content’ bug and, 253,

254

drop-down menu example, 130, 132

label elements, 194

liquid layout footers, 357

preventing following elements from

closing up, 305

tabbed navigation example, 115

thumbnail gallery application, 364

two-column centered layouts, 336, 342

use with negative margins, 359

wrapping text around images, 302

fly-out menus (see drop-down menus)

focus

access key response, 202

highlighting form fields with, 212

placing cursors in form fields, 187

:focus pseudo-class, 212

 element replacement, 14, 39

font size

alternative style sheets, 290

large text style sheets, 276, 279

zoom layouts and, 280

font sizing, 19, 21

(see also units, font size)

383The CSS Anthology

font-family property, 14, 23

fonts

browsers’ default fonts, 23

choice for printed text, 274

setting default, with type selectors, 6

specifying a font-family, 23

font-size property, 41

footers

correcting display of floated columns,

343

dynamic placement, 336

three-column layouts, 357

two-column layouts and, 341, 342, 343

for attribute, <label> element, 188

<form> element styling, 178

form fields

aligning, 189, 193, 194

applying different styles, 180

cursor positioning, 187, 202

sizes of text fields, 182

formatting

(see also text styling)

inline and block-level elements, 297

tabular data, 145

forms

access key use, 199

accessibility, 185

avoiding unwanted whitespace, 183

completing in Lynx, 261

‘editable table’ form, 205, 208

grouping related fields, 194

highlighting effects, 212, 213

inline display, 183

styling early, 183

two-column forms, 189, 192

forums (see mailing lists; SitePoint for­

ums)

Fundable site, 223

G
generic font families, 23

GIFs, single pixel, 238

gradient images, 64, 72, 347

graphics (see images)

graying out, 170

grayscale text, 274

grid layouts, 364

group purchases, 223

grouping form fields, 194

grouping menu options, 205

gutters (see margins)

H
<h1> elements (see heading elements)

hacks, 230

(see also bugs; Internet Explorer)

browser testing after implementing,

256

commenting, 235

conditional comment alternative, 237

‘The Holly Hack’, 255

as a last resort, 234

sites listing, 234

specifically for IE6, 236

star html hack, 236, 237

‘halo effect’ workaround, 237

handheld media type, 264, 265

hash symbol ID prefix, 8

<head> elements, 3, 237, 257

headers

aligning logos and slogans, 309

The CSS Anthology384

container collapse after floating ele­

ments, 313

heading elements

(see also table headings)

adding backgrounds, 34, 73

closing up after text, 36

underlining, 35

height property

avoiding container collapse, 314

IE6 interpretation, 236, 240

positioning nested elements, 319

text resizing and units, 315

hiding CSS from certain browsers, 230

hiding elements for print style sheets,

271, 273

high contrast style sheets, 276, 279

highlighting

(see also alternating colors)

annotated days in calendar, 167, 170

menus with different backgrounds,

203

mouseover and focus effects, 95, 153,

156, 212

tabbed navigation example, 117, 119

text, using elements, 39

‘The Holly Hack’, 255

horizontal menus

button-like navigation, 109

drop-down menus, 130

horizontal navigation, 54, 103

tabbed navigation, 110

horizontal rules, 43

hourglass icon, 121

:hover pseudo-class, 27, 28

background image effects, 75, 125

browser support, 96, 154

drop-down menu example, 132

rollover navigation effects, 95

row color changes, 153

<hr> elements, 43

HTML

(see also attributes)

accessibility features, 137

Compliance Mode DOCTYPEs, 247

elements usually treated as block-

level, 297

linking to a CSS style sheet, 4

styling form elements, 178

elements for tabular data, 139

XHTML syntax problems, 257

<html> elements and multiple back­

grounds, 77

hyperlinks (see links)

I

iCapture service, 223

icons (see cursors)

ID attributes

choice between classes and, 167, 294

hiding navigation, 271

ID selectors and, 8

linking to classes, 117, 118

multi-image containers, 61

navigation table example, 88

setting multiple link styles, 30

use with <label> elements, 188

IE (see Internet Explorer)

IEs 4 Linux site, 221

image-based navigation, 84, 86

image-heavy sites, 269, 330

images, 59–81

(see also background images)

385The CSS Anthology

adding borders, 60

alt text, 262

displaying a thumbnail gallery, 360

forcing block-level display, 364

as list item bullets, 51

placing text onto, 75

rollover effects using, 124

rounded corners using, 369

wrapping text around, 302–309

 elements, border attribute, 62

import directive, 226

indented borders, 142

indenting subnavigation, 101

indenting text, 44–46

(see also margins)

inheritance, 6, 21

inline display of lists, 54, 103

inline elements

distinguished from block-level, 297

forcing block-level display, 131, 295,

364

response to floated elements, 303

inline form elements, 183

<input> elements

‘editable table’ form, 211

styling examples, 178, 180

type attribute, 181

input fields (see form fields)

inset borders, 182

interface design, 205

(see also forms)

Internet Explorer

alternative style sheets and, 279, 282

box model bug in IE 5.x, 230, 245, 302

content centering bug in IE5.x, 322

CSS drop-down menus and, 127, 129

CSS rendering differences, 224, 230

directing different styles to IE6, 235

disappearing content bug, IE6, 251,

254, 309

enhanced CSS support in IE 7, 235

‘Flash of Unstyled Content’ bug, 229

flickering, 126

:focus pseudo-class and IE6, 212, 213

:hover pseudo-class limitation, 133,

156

installing multiple versions, 224

min-height interpretation bug in IE6,

236

official blog, 224

parser bug in IE 5.x, 232

Peekaboo Bug in IE 6, 255

phantom boxes bug, 225

Quirks Mode rendering, IE 6, 243

supported cursor values, 122

J
JavaScript

drop-down menus without, 129

highlight effects using, 156, 213

IE6 transparent PNGs using, 238

mouseover effects and, 122, 155

navigation relying on, 83

rounded box corners using, 371

style sheet switchers using, 282, 285

unobtrusive JavaScript, 157

unreliability of IE VM testing, 225

JAWS screen reader, 262

‘jiggling’ after pseudo-class styling, 29

JScript, 225

(see also JavaScript)

justified text, 42

The CSS Anthology386

K
KDE-based browsers, 218, 221

keyboard shortcuts, 199, 202

keyboard-only navigation, 201

keyword-based font sizing, 19

keyword-based image positioning, 68

KHTML-based browsers, 216, 221

Knoppix web site, 218

Konqueror browser, 216, 218, 221

L
<label> elements, 186, 188

cursor positioning advantage, 187

table-free form layout, 194

large text style sheets, 276, 279

layouts

(see also table-based layouts)

absolute positioning, 315

allowing for margins and padding, 301

alternative style sheet changes, 290

changing, using a style sheet switcher,

286

drop shadow effect, 347

grid layouts, 364

inline and block-level elements, 297

positioning items on the page, 315

print style sheets and, 269

redesign with unchanged markup, 332

three-column, 350

two-column, 323, 332

leading (see line-height property)

<legend> elements, 194, 197, 198, 202

 elements (see list items)

line breaks, unwanted, 183

line-height property, 40, 41

<link> elements, 4

import method and, 226

media attribute, 263, 271

rel attribute, 276

links

applying background images, 74

forcing block-level display, 95, 131,

295, 297

mouseover color change, 27

multiple styles for, 7, 29

pseudo-class formatting, 10

removing underlining from, 24, 89

styling, in navigation menus, 94

Linux users, 218, 220, 260

liquid layouts

image placement and, 68

positioning using percentages and, 69

text resizing and units, 330

three-column, 350, 357

two-column, 323

list items

display property and, 54, 103

events as, calendar example, 170

left indenting adjustment, 52, 53

nesting sub-lists, 100

styling bullets, 49, 51, 52

styling, in navigation menus, 94

lists

(see also bulleted lists)

basis of navigation menus, 90, 326

drop-down menus based on, 129

removing bullets, 170

subnavigation using nested lists, 97,

99

thumbnail gallery application, 361,

363

387The CSS Anthology

list-style property, 94

list-style-image property, 51, 52

list-style-type property, 49, 52, 53, 364

Live CDs, 218

load times, image-based navigation, 84

logos in headers, 309

Lynx browser, 260

M
Mac browsers, 220

(see also Safari)

Mac OS X

browser testing, 219

emulation, 217

Firefox default form styling on, 176,

198

Lynx browser for, 260

mailing lists, 223, 249

margin properties, 298–299

auto setting, 321, 322

floated header elements, 312

negative margins, 357

margin property, 298, 356

margin-bottom property, 170

margin-left property, 53, 89, 101, 341

margins

absolute positioning within, 318, 331

content positioning in liquid layouts,

329

distinguished from padding, 300

in horizontal navigation lists, 106

justification, 42

print style sheets, 272

removing, 55

removing left indenting, 52, 94, 105

table cell defaults, 89

use with floated images, 304

markup (see HTML; XHTML)

McLellan, Drew, 238

media at-rule, 264

media attribute, <link> elements, 263,

271

media attribute, <style> element, 263

@media directive, 264

media types specification, 263

menus (see drop-down menus; naviga­

tion)

meyerweb.com site, 51

Microsoft Corporation

(see also Internet Explorer; Windows)

Excel spreadsheets, 205, 208

Virtual PC 2007, 224

Virtual PC for Mac, 220

min-height property on IE6, 236, 240

mini-calendar, 171

mouse alternatives, 201

mouseover effects

(see also :hover pseudo-class)

cursor appearance, 119

drop-down menu example, 132

link color changes, 27

rollover navigation, 95, 122

row color changes, 153

Mozilla browsers, 154, 367

(see also Firefox)

N
navigation, 83–134

block-level links in, 297

button-like navigation, 106

cursor appearance, 119

full height columns, 344

The CSS Anthology388

horizontal menus, 103

image-based, 84

lists, as the basis of, 90

Lynx browser, 261

printing difficulties and, 270, 271

retrofitting, 86, 90

rollover effects, 95, 122

subnavigation, 97

two-column fixed-width layouts, 340,

341

two-column liquid layouts, 323, 326,

328, 331

negative margins, 357

nested elements

absolute positioning and, 318

<col> elements, 160

<div> elements, 318

multiple background image effect, 77

subnavigation with nested lists, 97,

99

table cell font sizing problems, 21

Netscape 4, 226, 227

NiftyCube web site, 371

numeric data alignment, 148

O
Opera browser, 216, 233, 265

operating systems (see Linux; Mac OS X;

Windows)

overlining, 26

overriding style definitions, 11, 227

P
<p> element styling, 14

padding

absolute positioning within, 318

box model bug in IE 5, 230

in horizontal navigation lists, 106

IE 5.x interpretation of, 302

margins distinguished from, 300

padding properties, 299

padding property, 34, 35, 211, 298

padding-left property, 44, 53

padding-top property, 133, 194

paragraph styling, 14, 309 (see text)

Parallels VM software, 219

parent element positioning, 320

PearPC emulator, 217, 220

Peekaboo Bug, IE 6, 255

percentage units, 18, 68

periods, preceding class names, 7

phantom boxes browser bug, 225

photo album application, 360

pica font sizing, 15

pixel font sizing, 16, 264, 292

placement (see positioning)

plugins for validation, 257

PNG transparency support, 237, 242

point font sizing, 15, 272, 274

Position is Everything site, 225, 235,

249, 255

position property (see absolute position­

ing; relative positioning)

positioning backgrounds, 66, 68, 69

(see also layout)

positioning context, 340

Print buttons on page and browser, 271

print media type, 265, 271

Print Preview function, 270, 272, 275

print style sheets, 16, 265–276

prologues, XML, 245

389The CSS Anthology

properties, CSS

form field applicability, 178

separating changing properties, 287,

290, 291

pseudo-class selectors, 10

pseudo-classes, 27, 29

(see also :active; :focus; :hover)

Q
Quirks Mode rendering, 243

R
readability

alternating row colors, 150

alternative style sheets, 226, 274, 279

keyword font sizing and, 19

mouseover highlighting, 153

rel attribute, <link> elements, 276

relative font sizing, 20, 21

relative positioning

CSS drop-down menu example, 130

two-column layouts using, 334, 340

use with IE6 transparency hack, 242

using position: absolute, 318

rendering modes, browsers, 243

repeating background images, 64

resizing and placing images, 69

resizing text

font sizing units and, 16, 18

rollover effect problems, 126

user resizing in liquid layouts, 330

user resizing of floated elements, 315

retrofitting navigation, 86, 90

rollover navigation, 95, 122

rounded corners, 367–374

rows (see table rows)

S
Safari browser

browser testing, 216

<input> element borders, 212

limited background-color support,

179, 203

limited button styling options, 185

sans-serif fonts, 24

scope attribute, <th> element, 140

screen readers, 259

(see also text-only devices)

absolute positioning and, 332

accessibility advantages of CSS, 215

<blockquote> elements and, 45

fieldsets and legends, 197

forms suitable for, 185, 188

image-based navigation and, 83

site testing with, 262

styling for, 263

summary attribute usefulness, 139

<script> elements

(see also JavaScript)

style sheet switchers using, 286

unobtrusive JavaScript, 157

within conditional comments, 240

scrolling content, 70

search engines and text as images, 76, 83

<select> elements, 178, 203

selectors, 6–11

self-closing tags, 257

serif fonts and printed text, 274

server-side style sheet selection, 286

shorthand property declarations, 71,

298, 299

The CSS Anthology390

sidebars, 7

site menus (see navigation)

SitePoint Forums, 223, 251

SiteVista service, 223

slogans, aligning, 309

solid color backgrounds, 347

spaces

inserting, 106, 365

removing unwanted, 144, 183

 elements

access key use, 200, 202

aligning logos and slogans, 312

highlighting, 39

line-height units and, 41

Spanky Corners technique, 374

speech media type, 264, 265

spreadsheets

alternating column colors, 157

alternating row colors, 150

color change on mouseover, 153

‘editable table’ form, 205, 209, 211

tabular data example, 136–156

star html hack, 236, 237

strict DOCTYPEs, 243

striping (see alternating colors)

style definitions, application order, 8,

11, 29

<style> elements, 3, 4, 263

style sheet switchers, 282

style sheets (see alternative style sheets;

print style sheets)

styling tabular data, 145, 148

(see also text styling)

Submit buttons, 180, 182, 184

subnavigation, 97–102

(see also drop-down menus)

Suckerfish menus, 129

summary attribute, <table> element, 139

syntax, invalid, 257

T
table cells

adding borders to, 141

collapsing borders, 89, 144, 148

controlling spacing between, 144

font sizing in nested cells, 21

table columns, 157

table headings, 137, 140

(see also <th> elements)

table rows, 150, 153

<table> elements, summary attribute, 139

table-based layouts

accessibility problems, 135, 188

alternative for aligning header content,

309

alternative for image galleries, 360

print style sheets, 276

spreadsheet-type data, 136, 205

two-column forms, 189, 192

use for forms, 175

value of the <label> element, 188

tables

borders for, 141, 148

calendar example, 161–171

collapsing cells, 89

‘editable table’ form, 205

identifying headings, 140

navigation based on CSS, 88

navigation based on images, 86

navigation layouts avoiding, 90

navigation menu based on, 84

relative font sizing problems, 21

391 The CSS Anthology

setting widths, 168

spreadsheet example, 136–156

<td> elements

calendar example, 169

navigation menu example, 89

styling with borders, 141

television-type devices, 264

text

(see also fonts)

buttons displaying as, 184

differentiation with class selectors, 7

flowing around forms, 184

grayscale for print styles, 274

in relation to images, 75, 302, 305, 364

right aligning, 312

text files, style sheets as, 4

text sizing, 16, 315

(see also resizing text)

text styling, 13–58

(see also paragraphs)

adding background colors, 34

altering line-heights, 40

case changes, 47, 48

centering, 46

closing up headings, 36

formatting bulleted lists, 49, 51

highlighting, 39

horizontal rules, 43

indenting, 44, 46

justification, 42

list item styling, 54

modifying links, 24–31

underlining headings, 35

text-align property, 42, 43, 46, 148, 322

<textarea> elements, 178

text-decoration property, 24–27, 35, 89,

200–202

text-indent property, 46

text-only devices

(see also screen readers)

forms suitable for, 185

grouping form fields, 194, 197

Lynx browser testing, 260

styling for, 263

text-transform property, 47–48

<th> elements, 140

calendar example, 166, 169

‘editable table’ form, 209, 210

styling, 149

styling with borders, 141

three-column layouts, 350, 357

thumbnail galleries, 360–367

tiling, background-images, 64

<tr> elements, 153, 155, 156

transparent images, 237, 242

Tredosoft site, 225

troubleshooting CSS, 248

tty media type, 264

two-column layouts, 323, 332, 336, 342

type attribute, <input> element, 181

type attribute, <style> element, 4

type selectors, 6

typefaces (see fonts)

U
Ubuntu Live CD, 218

 elements (see lists)

underlining, 24, 27, 35, 89, 199

units, font size

background-position property, 68, 69

line-height property and, 41

The CSS Anthology392

for printing, 272

user resizing, 315, 330

unobtrusive JavaScript, 157

unordered lists (see lists)

uppercase text, 47, 48

usability, 150, 176, 185

user interaction effects, JavaScript, 156

user interfaces (see forms)

user selection of style sheets, 276, 282

V

validation, 248, 249, 251, 256

Virtual PC 2007, 224

Virtual PC for Mac, 220

:visited pseudo-class, 28

visually impaired users, 259, 280

(see also screen readers)

VMWare virtual machines, 221

voice-family property, 232

W
W3C (World Wide Web Consortium),

251, 256

Walker, Alex, 374

warnings, validator, 256, 257

WebTV, 263

WellStyled.com rollover technique, 122

whitespace, unwanted, 183

width property

box model hack, 232, 233

left navigation menu, 328

suppressing wrapping, 366

Windows users, 217, 218, 260

Wine Windows emulator, 221

workarounds (see hacks)

wrapper <div> element, 338

wrapping effect, thumbnail gallery, 365,

366

X

XHTML, 243, 247, 257

(see also HTML)

Z
zoom layouts, 280

	The CSS Anthology
	Table of Contents
	Preface
	1. Getting Started with CSS
	2. Text Styling and Other Basics
	3. CSS and Images
	4. Navigation
	5. Tabular Data
	6. Forms and User Interfaces
	7. Cross-browser Techniques
	8. Accessibility and Alternative Devices
	9. CSS Positioning and Layout
	Index

